基于FPGA的实时分布式温度采集技术
时间:04-12
来源:互联网
点击:
3 基于FPGA与基于单片机控制DS18B20
3.1 保证时序精确
单片机作为基于DS18B20的温度监控系统的控制器,用汇编语言编写程序,很容易控制时间,因为我们知道每条语句的执行时间,每段宏的执行时间,每段子程序加调用语句所消耗的时间。但是当系统进入中断,时序的控制就无法保证精确。
3.2 查找序列号
单片机的管脚有限,所以要用单片机检测多个温度点,就需要将多个DS18B20挂在一条总线上。很显然,序列号许配工作需要额外的时间,而且在读取一个测温点温度值的过程中,其它的测温点也都完成了测温并等待读取,这无疑降低了测温的效率。
用FPGA代替单片机,以上问题就不存在了。首先FPGA具有丰富的管脚资源,可以让每个传感器都单独使用一根数据线。这样不但可以实现同时读取每一个传感器的温度值,而且可以不用进行序列号的匹配。大大提高了整个系统测温的效率,维护更加方便快捷。
3.3 成本考虑
单片机技术如今已经非常成熟。应用领域也非常广泛.价钱也非常便宜。普通的型号价格在l美元左右,最高端的型号也只有10美元。因此用单片机作为控制器.整体系统的成本相对较低。虽然FPGA如今也已经得到了广泛的普及,但是价格还是相对较高,因此用FPGA作为系统的控制器威本就相对高一些。
4 结论
使用FPGA作为DS18B20的控制器.可以保证时序上精确符合单总线通信协议.系统运行时控制部分、显示部分、人机交互部分可以并行地运行互不干扰,提高了整体系统的实时性与稳定性:与用单片机作为控制器的系统做出比较.分析了两者作为控制器的优缺点。
基于FPGA和DS18B20的分布式温度采集系统.可实现同时监测多个温度点,并无需知道每一个传感器的序列号,大大提高了温度采集系统的实时性和可靠性。虽然基于FPGA的系统成本相对较高.但为分布式温度采集实时性要求较高的应用场合提出了解决办法。
本文创新点:基于FPGA和DS18B20的分布式温度采集系统,可以实现同时监测多个检测点的温度,并无需知道每一个传感器的序列号,大大提高了温度采集系统的实时性和可靠性。为分布式温度采集实时性要求较高的应用场合提出了解决办法。项目经济效益:硬件成本约6000元,推广价格约8500元。
作者:王景中 来源:《微计算机信息》(嵌入式与SOC)2009年第9-2期
3.1 保证时序精确
单片机作为基于DS18B20的温度监控系统的控制器,用汇编语言编写程序,很容易控制时间,因为我们知道每条语句的执行时间,每段宏的执行时间,每段子程序加调用语句所消耗的时间。但是当系统进入中断,时序的控制就无法保证精确。
3.2 查找序列号
单片机的管脚有限,所以要用单片机检测多个温度点,就需要将多个DS18B20挂在一条总线上。很显然,序列号许配工作需要额外的时间,而且在读取一个测温点温度值的过程中,其它的测温点也都完成了测温并等待读取,这无疑降低了测温的效率。
用FPGA代替单片机,以上问题就不存在了。首先FPGA具有丰富的管脚资源,可以让每个传感器都单独使用一根数据线。这样不但可以实现同时读取每一个传感器的温度值,而且可以不用进行序列号的匹配。大大提高了整个系统测温的效率,维护更加方便快捷。
3.3 成本考虑
单片机技术如今已经非常成熟。应用领域也非常广泛.价钱也非常便宜。普通的型号价格在l美元左右,最高端的型号也只有10美元。因此用单片机作为控制器.整体系统的成本相对较低。虽然FPGA如今也已经得到了广泛的普及,但是价格还是相对较高,因此用FPGA作为系统的控制器威本就相对高一些。
4 结论
使用FPGA作为DS18B20的控制器.可以保证时序上精确符合单总线通信协议.系统运行时控制部分、显示部分、人机交互部分可以并行地运行互不干扰,提高了整体系统的实时性与稳定性:与用单片机作为控制器的系统做出比较.分析了两者作为控制器的优缺点。
基于FPGA和DS18B20的分布式温度采集系统.可实现同时监测多个温度点,并无需知道每一个传感器的序列号,大大提高了温度采集系统的实时性和可靠性。虽然基于FPGA的系统成本相对较高.但为分布式温度采集实时性要求较高的应用场合提出了解决办法。
本文创新点:基于FPGA和DS18B20的分布式温度采集系统,可以实现同时监测多个检测点的温度,并无需知道每一个传感器的序列号,大大提高了温度采集系统的实时性和可靠性。为分布式温度采集实时性要求较高的应用场合提出了解决办法。项目经济效益:硬件成本约6000元,推广价格约8500元。
作者:王景中 来源:《微计算机信息》(嵌入式与SOC)2009年第9-2期
单片机 FPGA Xilinx 传感器 温度传感器 总线 Altera PIC VHDL 嵌入式 相关文章:
- 基于nRF2401智能无线火灾监控系统设计(04-01)
- 家居安防无线监控报警系统(04-02)
- 高精度压力测控系统的试验研究(04-08)
- 提高实时系统数据采集质量的研究(04-09)
- 基于MSP430的低功耗便携式测温仪设计(06-18)
- 以超低功耗微处理器MSP430为核心的热计量表设计(06-18)
