一种基于OMAP5910的低压保护测控装置设计
时间:08-06
来源:互联网
点击:
图3 数字量输入电路
数字量输出电路采用启动继电器闭锁形式,启动继电器的控制信号由OMAP5910的ARM内核控制,出口继电器的控制信号由OMAP5910的DSP内核控制,只有启动继电器动作后,才能开放出口继电器的正电源,从而实现数字量输出控制的部分解耦,避免由于器件损坏而引起保护误动作。数字量输出接口电路如图4所示,当需要输出时,首先使启动继电器的DOENH置高电平,DOENL置低电平,光电耦合器EL852导通,启动继电器动作,其常开触点闭合,使+24VE连接到+24V;然后将DOOUT置为低电平,光电耦合器EL852导通,出口继电器动作,其常开触点闭合,使跳闸或告警电路导通。
图4 数字量输出电路
通信接口电路
OMAP5910的ARM内核是实现信息交换的主要枢纽,本装置配置有两路10/100Mbit/s光纤以太网口和两路RS485接口。两路以太网口组成双GOOSE网,负责接收和解析来自过程层智能操作单元的跳闸、开关等数字量信息,并向智能操作单元实时传送数字量输出信息,与过程层设备实现信息共享。RS485接口主要用于装置的调试与维护,也可以用于与其它智能设备进行数据通信。
以太网接口电路采用以太网控制芯片RTL8019AS实现,RTL8019AS是REALTEK公司出品的10Mbit/s以太网控制器,支持8位或16位数据总线,实现了以太网媒介访问层(MAC)和物理层(PHY)的所有功能,通过RJ45接口与以太网相连。RS485接口电路使用RSM485D芯片实现,RSM485D是集成双路电源隔离、电气隔离、RS485接口芯片和总线保护器于一身的双路隔离收发器模块,具有很好的隔离特性,隔离电压高达2500VDC。
保护功能配置灵活
保护测控装置设置有丰富的保护功能,包括三段式带复压闭锁的定时限过流保护、三段式过负荷保护、反时限过流保护、零序电流保护、负序电流保护、低电压保护、过电压保护和PT断线告警等。保护测控装置按照模块化的设计思想,将不同的保护功能给划分为独立的模块,各个模块具有独立的入口条件和出口状态,并且每个模块设置有控制软压板,可以通过控制软压板的投入或退出来配置装置的保护功能,各保护功能的整定值和出口方式(跳闸或告警)可以通过按键或通信网络来配置。这种模块化的设计使保护功能具有极强的可读性和移植性,各模块间的协作关系清晰明了,有利于提高保护的可靠性。
OMAP5910的DSP内核根据配置的保护功能和保护整定值与出口方式,将采集到的保护用交流模拟量通过数字处理后,与保护整定值进行比较,当满足保护动作条件时,按照配置的出口方式动作,并将出口信息传递给ARM核,供LCD显示、状态指示和数据通信使用。当装置被配以某种或多种保护功能时,其它未被配置的保护功能的相关整定值和事件信息变为不可见,在系统程序中不执行相关保护功能,因此只需配置所需保护功能的整定值,可以最大限度地减少整定值数量,简化用户的定值管理,减少出错的可能。
软件设计
OMAP5910是一个高度集成的硬件和软件应用平台,它支持WinCE、EPOC、Nucleus、VxWorks和Linux等多种操作系统,由于VxWorks操作系统具有高效的任务管理功能、支持多任务多优先级、支持优先级抢占和轮转调度机制、极高的实时性和可靠性等特点,使其非常适合在保护测控装置中应用,可以提高装置的实时性、保护软件的可靠性和软件开发及维护效率。
由于VxWorks操作系统采用多任务、优先级抢占机制,因此在编程中把重点放在对任务、中断进行划分和任务调度的实现等问题上。系统主要包括三个中断、一个任务调度和多个任务,三个中断包括A/D采样中断、定时器中断和按键输入中断,任务包括模拟量计算任务、保护逻辑判断任务、保护功能任务、数字量控制任务、故障录波任务、通信处理任务、按键管理任务、报警功能(LCD显示和指示灯指示)任务和GPS对时任务。实时多任务调度是整个系统的核心,是保证多个任务合理有序地执行的关键,设计时将任务调度放在数据采样中断处理中执行,其任务调度框图如图5所示。
图5 任务调度流程图
结论
本文提出了以OMAP5910为核心处理器的低压保护测控装置设计方案,借助OMAP强大的硬件平台和VxWorks操作系统的软件环境,使整个装置的硬件结构更加简洁和优化,有效地降低了装置的整体功耗,提高了装置内部数据交换的效率和软件开发的灵活性,提高了装置的可靠性和可扩展性。同时,装置具有灵活的保护功能配置和保护出口配置功能,简化了保护整定值的管理和使用,便于使用和维护。
电路 嵌入式 自动化 ARM DSP FPGA 电压 电流 GPS 变压器 继电器 LTE 总线 收发器 LCD VxWorks Linux 相关文章:
- 基于P89C61x2/ISP1581的USB接口电路的设计(02-13)
- 行波管关断方式对应用系统可靠性的影响(06-24)
- 基于VME总线的RDC接口电路设计(06-29)
- 单芯片集成电路优化自适应转向大灯系统的设计 (07-12)
- 单片机应用系统的抗干扰技术(08-07)
- 基于FPGA的线阵CCD驱动器设计(11-26)