多种天线集成在一张卡优化设计
最近几年,非接触式智能卡已越来越多地应用于支付和识别领域。除了当前智能卡使用最为广泛的公交行业之外,越来越多的国家开始考虑将非接触式应用推广至其他全国性项目。鉴于非接触式智能卡应用的全球性增长,同时考虑到不同产品的技术要求以及终端客户的不同需求,设计满足不同应用需求的智能卡天线则成了一项极富挑战性的工作。本文将讨论智能卡天线设计过程中需要考虑的各种因素,以及在不同应用领域中面临的挑战。
智能卡天线设计需要考虑的因素
智能卡天线是一种电气组件,可通过读卡器产生的射频(RF)磁场的电磁感应,向智能卡集成电路(IC)供电。它同时也是智能卡IC与读卡器之间的通讯媒介。设计不当的天线会极大地降低IC卡的性能,而设计合理的天线则会帮助IC卡实现其设计的最佳性能,实现以下特性:
符合ISO/IEC 14443/10373-6规定的工作场域和负载调制要求
符合PayPass-ISO/IEC 14443执行规范- V1.1 和 EMV非接触式通讯协议规范V2.0相关要求, 兼容现有通过认证的读写器
优化工作距离:为指定应用带来最佳工作距离,而不影响智能卡功能
支持多卡,即使这些卡相互叠放
天线在卡中的准确定位:为了保证智能卡与采用小型天线的读卡器协同应用,天线必须设计在卡上的一个特定的区域内。因为只有这样,智能卡和读卡器的天线才能实现预定的磁耦合。
图题:双接口非接触式智能卡的典型构造
additional overlay-coating foil, thickness 50-100um:附加覆盖层,厚度50-100微米
printed overlay foil, thickness 100-150um:印刷覆盖层,厚度100-150微米
basic foil with coil: 200-300um, PVC, surface glueless:带线圈的基层:200-300微米,PVC材质,脱胶表面
Module: 540um total thickness:模块:总厚度540微米
在智能卡天线设计中需要考虑三个会影响卡谐振频率的主要元器件。为了使智能卡的工作距离和RF通讯稳定性等性能指标达到最佳状态,必须充分考虑到这些元器件的影响。
集成电路(IC)
这是核心部分,芯片的输入电容和最小工作电压将决定智能卡的最大工作距离和多卡同时工作等特性。
IC模块
智能卡IC置于模块之内。模块使得IC易于处理,同时保护IC免受到外来压力(如过度弯折等)和紫外线的损害。另外模块设计扩大了天线连接区域,为采用不同的天线连接方式提供了方便。在智能卡封装工序中,模块比裸装的IC更常使用。从电气角度看,模块给IC卡的谐振电路增加了额外的电容。
智能卡封装材料
由于其介电性能,封装材料也为最终IC卡的谐振电路增加了额外的电容。智能卡天线设计及其对特定应用领域的影响良好设计的智能卡天线是否就可以适合所有的应用领域而不会发生任何小故障?事实并非如此。仔细设计的天线对非接触应用产品的综合性能具有极其重要的作用,但是不同的应用其技术要求完全不同。因此,要设计出一款通用天线,是一项极富挑战性的工作。以下内容将简要描述一些典型应用中面临的挑战。
支付应用
卡和读卡系统之间的临界耦合效应当读卡器比智能卡小时,RF 通讯就遇到了挑战。出于简化和设计方便的考虑,目前流行的标准是将非接触式读卡器设计得尽可能小,尽可能紧凑。这意味着读卡器的天线要小于一般常见的ID1 的尺寸。然而,由于业内普遍接受的大多数支付卡(例如Visawave, Paywave, JCB)仍然执行ISO/IEC 7810 标准(ID1,85mm*54mm)的规定制式,使用较小尺寸的读卡器就对RF 通讯提出了挑战。
以上情形导致卡和读卡器系统之间产生临界耦合效应,这种临界耦合效应通常会使卡和读卡器之间的RF 通讯变得极不稳定。尽管看似不合理,但这种耦合效应确实有违基本的逻辑,即,卡离读卡器越近,耦合效应就越强!
但是,采用如下一些方法,可以最大限度减轻这个问题的影响:
为了克服因卡片天线和读卡器天线的尺寸不匹配而造成的负面影响,一种方法是设计者可以调整卡片天线和读卡器天线的尺寸,使得读卡器天线的尺寸比卡片天线的大。根据支付系统的限制条件,可对读卡器天线加以调整或者改变智能卡天线的设计。事实上,尺寸只有ID1 一半的支付卡在市场上已经越来越普遍。这种方法虽然解决了上述难题,但它也带来了其他问题。这些尺寸只有ID1 一半的卡很难满足ISO14443 规定的关于最小负载的调制要求。尽管如此,业内已经找到一些采用较小外形尺寸(ID1/2 和ID1/3),并满足ISO14443 规定的负载调制限制的设计方案。
改变卡片天线的设计(例如感应系数、线圈材料等)以达到调整Q 值或谐振频率的目的。如果线圈的Q 值较低,它传递给卡的能量耦合就比较小,将卡去谐以获得较高的
- Wi-Fi视频传输优化WLAN设计(10-21)
- 无线射频识别(RFID)芯片技术(06-30)
- 低功耗非接触式射频读写器的设计(07-25)
- RFID在内河船舶识别中的应用(01-07)
- 智能卡的主要商业应用(02-13)
- 综合智能卡应用系统技术方案分析(10-29)