基于ARM技术的服装舒适性检测系统的设计
时间:11-05
来源:互联网
点击:
2.2 数据采集及存储控制的硬件设计
数据采集及存储控制模块是本系统的核心,该模块性能直接影响整个服装测量系统的测量精度和运行速度。数据控制及存储模块结构框图如图3所示,数据采集及存储控制模块的核心部分是三星公司生产的高性能S3C2410微处理器。该处理器是基于ARM920T内核的16/32位RISC嵌入式微处理器,片上主要集成有117个通用I/O接口,24个外部中断源,4个具有PWM功能的计时器及1个内时钟,8通道10位ADC,3通道的UART,4通道的SDRAM控制器,1个LCD控制器,具有日历功能的RTC(实时时钟),SD卡接口等。同时,S3C2410还提供一组完整的系统外围设备,主要有MAX232、按键、LED、SD存储卡、SDRAM、SRAM等。
S3C2410微处理器利用内置的10 b模/数转换器(ADC)以500 KSPS的采样速率将压力信号值转换的模拟电压信号转换为10 b分辨率的数字信号;S3C2410微处理器利用其GPIO接口实现温湿度数字信号的采集。另外该处理器通过按键对采样通道的选择和采样速率进行控制;以SD卡作为存储介质对所采集的数据进行离线保存。此芯片主要面向手持设备,以及高性价比、低功耗的应用,可满足数据采集及存储控制模块控制的需要。
3 服装舒适性检测系统软件的实现
服装舒适性检测系统的软件实现指的是数据采集及存储控制硬件模块的软件实现以及对数据分析模块的软件实现。
3.1 数据采集和控制及数据处理硬件模块的软件实现
系统采集、存储模块软件部分是在ADS 1.2环境下利用C语言进行编程,并针对相应的硬件功能实现的,流程图如图4所示。数据采集和控制及数据处理硬件模块的软件实现首先是对系统进行初始化,系统初始化主要指中断、存储器系统、堆栈的初始化及键盘、LED、SD存储卡等硬件的初始化;接着通过键盘实现采样通道和采样速率的设定;然后启动A/D转换将采集的模拟压力-电压信号转换为数字信号;最后在采样结束时将采集的压力、温湿度信号导入SD存储卡实现采集信号的存储操作。
3.2 数据分析模块的软件实现
数据分析模块只涉及软件实现,该模块采用LabVIEW 7.1软件实现了采集数据的输出、图形的实时显示与Excel测试报告的生成与保存功能,程序示意图如图5所示。数据分析模块的软件实现首先是打开离线保存在SD存储卡里的温湿度压力信号的文件;其次进入While loop循环通过对控制按钮设定连续读取文件中的信号,并将其数据分流实现各通道压力、温湿度信号的图形化显示;最后保存Excel测试报告并关闭文件。
设计的数据分析模块的面板如图6所示,该模块灵活简洁,可对压力、温湿度信号进行长时间的连续监测,形象地模拟了传统仪器的外观。在操作面板时首先将布尔开关指向“开始”,打开离线保存在SD存储卡里的温湿度压力信号的文本文件(如j:\1.txt)读取数据,即每隔一定时间进行一次连续的数据读取,然后用户通过面板的“读取数据点数”和“读取位置”控件进行设置所需读取点数及通道的选择,将布尔开关指向“停止”即可结束信号的显示;最后点击Excel按钮将测试报告以电子表格的形式进行保存。该面板实现的是8路信号的数据显示功能,便于在同一时间监测多部位的压力、温湿度信号的变化情况,同时Excel测试报告实现了测试信息长时间保存的功能。
4 测试实验
图6显示的曲线分别是服装舒适性检测系统对人体在正常工作状态下后背、腋窝温湿度和肩部、腹部压力测试的结果。由于人体在正常工作状态时其同一部位的压力及温湿度值随时间变化不大,图6所示的测试的结果符合人体正常着装状态下不同部位的压力及湿度实际变化情况。
5 结语
设计一种基于嵌入式ARM处理器的便携式服装压力、温湿度测量系统。该系统在单个芯片上实现了人体在正常工作状态下的服装压力、温湿度连续采集与存储,基于LabVIEW实现实时数据分析,且系统具有体积小、功耗低、速度快、测试准确、工作可靠等特点,该便携式系统可以为服装舒适性的客观评定提供依据和基础,为服装功能测量系统的开发提供了一条新的思路。
数据采集及存储控制模块是本系统的核心,该模块性能直接影响整个服装测量系统的测量精度和运行速度。数据控制及存储模块结构框图如图3所示,数据采集及存储控制模块的核心部分是三星公司生产的高性能S3C2410微处理器。该处理器是基于ARM920T内核的16/32位RISC嵌入式微处理器,片上主要集成有117个通用I/O接口,24个外部中断源,4个具有PWM功能的计时器及1个内时钟,8通道10位ADC,3通道的UART,4通道的SDRAM控制器,1个LCD控制器,具有日历功能的RTC(实时时钟),SD卡接口等。同时,S3C2410还提供一组完整的系统外围设备,主要有MAX232、按键、LED、SD存储卡、SDRAM、SRAM等。
S3C2410微处理器利用内置的10 b模/数转换器(ADC)以500 KSPS的采样速率将压力信号值转换的模拟电压信号转换为10 b分辨率的数字信号;S3C2410微处理器利用其GPIO接口实现温湿度数字信号的采集。另外该处理器通过按键对采样通道的选择和采样速率进行控制;以SD卡作为存储介质对所采集的数据进行离线保存。此芯片主要面向手持设备,以及高性价比、低功耗的应用,可满足数据采集及存储控制模块控制的需要。
3 服装舒适性检测系统软件的实现
服装舒适性检测系统的软件实现指的是数据采集及存储控制硬件模块的软件实现以及对数据分析模块的软件实现。
3.1 数据采集和控制及数据处理硬件模块的软件实现
系统采集、存储模块软件部分是在ADS 1.2环境下利用C语言进行编程,并针对相应的硬件功能实现的,流程图如图4所示。数据采集和控制及数据处理硬件模块的软件实现首先是对系统进行初始化,系统初始化主要指中断、存储器系统、堆栈的初始化及键盘、LED、SD存储卡等硬件的初始化;接着通过键盘实现采样通道和采样速率的设定;然后启动A/D转换将采集的模拟压力-电压信号转换为数字信号;最后在采样结束时将采集的压力、温湿度信号导入SD存储卡实现采集信号的存储操作。
3.2 数据分析模块的软件实现
数据分析模块只涉及软件实现,该模块采用LabVIEW 7.1软件实现了采集数据的输出、图形的实时显示与Excel测试报告的生成与保存功能,程序示意图如图5所示。数据分析模块的软件实现首先是打开离线保存在SD存储卡里的温湿度压力信号的文件;其次进入While loop循环通过对控制按钮设定连续读取文件中的信号,并将其数据分流实现各通道压力、温湿度信号的图形化显示;最后保存Excel测试报告并关闭文件。
设计的数据分析模块的面板如图6所示,该模块灵活简洁,可对压力、温湿度信号进行长时间的连续监测,形象地模拟了传统仪器的外观。在操作面板时首先将布尔开关指向“开始”,打开离线保存在SD存储卡里的温湿度压力信号的文本文件(如j:\1.txt)读取数据,即每隔一定时间进行一次连续的数据读取,然后用户通过面板的“读取数据点数”和“读取位置”控件进行设置所需读取点数及通道的选择,将布尔开关指向“停止”即可结束信号的显示;最后点击Excel按钮将测试报告以电子表格的形式进行保存。该面板实现的是8路信号的数据显示功能,便于在同一时间监测多部位的压力、温湿度信号的变化情况,同时Excel测试报告实现了测试信息长时间保存的功能。
4 测试实验
图6显示的曲线分别是服装舒适性检测系统对人体在正常工作状态下后背、腋窝温湿度和肩部、腹部压力测试的结果。由于人体在正常工作状态时其同一部位的压力及温湿度值随时间变化不大,图6所示的测试的结果符合人体正常着装状态下不同部位的压力及湿度实际变化情况。
5 结语
设计一种基于嵌入式ARM处理器的便携式服装压力、温湿度测量系统。该系统在单个芯片上实现了人体在正常工作状态下的服装压力、温湿度连续采集与存储,基于LabVIEW实现实时数据分析,且系统具有体积小、功耗低、速度快、测试准确、工作可靠等特点,该便携式系统可以为服装舒适性的客观评定提供依据和基础,为服装功能测量系统的开发提供了一条新的思路。
ARM 传感器 电压 电路 ADC LabVIEW 压力传感器 放大器 总线 温度传感器 电阻 S3C2410 嵌入式 PWM LCD LED C语言 电子 相关文章:
- 基于ARM的除法运算优化策略(01-14)
- 基于ARM的CAN总线智能节点的设计(01-24)
- ARM基础知识教程五 (02-08)
- ARM基础知识教程六(02-08)
- ARM基础知识教程七(02-08)
- ARM基础知识教程八(02-08)