用单片机数据采集系统研究瞬变过程
时间:10-30
来源:互联网
点击:
在教学实验及科学实验中,我们常常需要了解充电的电压、电流曲线、放电的电压曲线,记录并整理数据,画曲线,这里使用单片机数据采集系统可以直观了解RC电路的过渡过程,用数据采集系统得出的数据计算该RC电路的时间常数。
1 RC电路的过渡过程
实验电路如图1所示。
当数据采集系统启动后,U1为高电平,晶体三极管T1导通,T1集电极UC1下降,合二极管D截止,三极管T2也截止,而电容器C通过r4及r5充电,充电时间常数近似为
τ充=(r4+r5)·C
电阻r5上的电压Ur与电容电流成正比,UC近似为电容器电压,将UC与Ur送入数据采集系统,可以得到256对电容电压及电容电流的数据。接着再启动数据采集系统,U1为低电平,T1截止,+5V电源通过r1及D使T2的基极,发射极间有正向电流,因而T2导通 。这时C通过r3、r5、T2放电,放电时间常数近似为
τ放=(r5+r3)·C
在数据采集系统启动后,给出UC有256个数据,由于放电时间常数小,因此UC很快到零 ,由于ic只有负值,读不出来,显示为零。
2 工作原理
2.1 硬件电路的设计
本系统的硬件电路可选择8031单片机为主控制器,加上地址锁存器373,程序存储器2764和数据存隼器6116,构成一个单片机最小系统。在单片机最小系统上扩展ADC0809芯片,DAC0832芯片,构成一个完整的数据采集系统。
数据采集系统的框图如图2所示。
2.2 软件设计
当单片机控制电路时,A/D变换器立即工作,单片机分时对模拟输入信号进行采集,输入的模拟量变换为数字量后存入单片机存储器RAM中,然后,单片机将RAM中的数字量送入D/A转换电路,D/A电路通常输出与数字量相对应的模拟电流,经I/V变换成模拟电压值。得到的模拟电压与输入模拟信号一致,可用示波器观察其过渡过程的变化 。程序流程框图如图3所示。
3 结束语
本系统可直接从示波器上读取充电电压、电流曲线,放电的电压曲线,记录并整理数据,由充电曲线上画曲线的切线,可求充电时间常数。由放电曲线上画曲线的切线可求放电时间常数。用数据采集系统研究的瞬变过程,方便、直观,加深对RC电路过渡过程的了解。
1 RC电路的过渡过程
实验电路如图1所示。
当数据采集系统启动后,U1为高电平,晶体三极管T1导通,T1集电极UC1下降,合二极管D截止,三极管T2也截止,而电容器C通过r4及r5充电,充电时间常数近似为
τ充=(r4+r5)·C
电阻r5上的电压Ur与电容电流成正比,UC近似为电容器电压,将UC与Ur送入数据采集系统,可以得到256对电容电压及电容电流的数据。接着再启动数据采集系统,U1为低电平,T1截止,+5V电源通过r1及D使T2的基极,发射极间有正向电流,因而T2导通 。这时C通过r3、r5、T2放电,放电时间常数近似为
τ放=(r5+r3)·C
在数据采集系统启动后,给出UC有256个数据,由于放电时间常数小,因此UC很快到零 ,由于ic只有负值,读不出来,显示为零。
2 工作原理
2.1 硬件电路的设计
本系统的硬件电路可选择8031单片机为主控制器,加上地址锁存器373,程序存储器2764和数据存隼器6116,构成一个单片机最小系统。在单片机最小系统上扩展ADC0809芯片,DAC0832芯片,构成一个完整的数据采集系统。
数据采集系统的框图如图2所示。
2.2 软件设计
当单片机控制电路时,A/D变换器立即工作,单片机分时对模拟输入信号进行采集,输入的模拟量变换为数字量后存入单片机存储器RAM中,然后,单片机将RAM中的数字量送入D/A转换电路,D/A电路通常输出与数字量相对应的模拟电流,经I/V变换成模拟电压值。得到的模拟电压与输入模拟信号一致,可用示波器观察其过渡过程的变化 。程序流程框图如图3所示。
3 结束语
本系统可直接从示波器上读取充电电压、电流曲线,放电的电压曲线,记录并整理数据,由充电曲线上画曲线的切线,可求充电时间常数。由放电曲线上画曲线的切线可求放电时间常数。用数据采集系统研究的瞬变过程,方便、直观,加深对RC电路过渡过程的了解。
电压 电流 单片机 电路 三极管 二极管 电容 电阻 电容器 ADC DAC 示波器 相关文章:
- 基于ARM7的LCD显示电压示波系统的设计(07-27)
- 隔离技术在嵌入式系统接口中的应用(05-30)
- 嵌入式系统电源监控模块设计(06-21)
- 基于STC89C51单片机的数字电压表设计(10-10)
- 数字电路中△I噪声的危害(11-13)
- 基于PIC单片机的空间电压矢量PWM控制方法研究(03-13)