SEPTNY256型单片机开关电源及其应用
时间:10-30
来源:互联网
点击:
4 TNY256的典型应用
由TNY256组成的5.5W、9VDC电源适配器电路如图3所示,交流输入电压范围为85~265V。图中U2为光磁耦合器SFH615-2,U3为可调式并联精密稳压器TL431CLP,F1为保险丝电阻器。85~265V交流电经过D1~D4桥式整流和C1、C2滤波后,得到约300V的直流高压VI。鉴于在功率MOSFET关断瞬间,脉冲变压器的漏感会产生尖峰电压,因此,由电阻器R3、C3和超快恢复二极管D5(1N4937)组成的功率MOSFET漏极钳位保护电路,可有效抑制漏极上的反向峰值电压,从而保护TNY256内的功率MOSFET不受损坏。C3选用10000pF/1kV的高压陶瓷电容器。
次级电压通过D6、C6、C7、L3和C8整充滤波后,得到9V、0.6A的直流输出。D4采用MBR360的肖特基二极管。为了抑制初、次级之间的共模干扰,在初、次级的同名端还并联一只2200pF/2kV的高压陶瓷电容C5。输出电压由精密电阻R7、R8决定,电阻R9为TL431的限流电阻。
5 TNY256的使用注意事项
TNY256在中等负载或轻负载下工作时会跳过一些时钟周期,这容易使高频变压器产生音频噪声干扰。为减小此干扰,宜选磁通密度小于0.3T的磁芯材料。此外,最好用TVS二极管和陶瓷电容构成的漏极箝位保护电路来衰减视频噪声。
使用TNY256系列时推荐的一种印制板设计如图4所示。
设计时需注意以下几点:
·连接输入滤波电容器、高频变压器初级如TNY256回路的覆铜面积应尽量小。
·DIP-8封装的TNY256系列电路是靠覆铜接地来散热的,图中打斜线的面积要足够大,确保散热良好。
·安全电容器要直接焊接在初级接地端和次级返回端之间。
·连接次级线圈、输出级整流管和滤波电容器的回路面积应尽量小,但整流管焊盘附近的覆铜要足够大,以确保散热良好。
·为减小耦合噪声,光耦晶体管到EN/UV脚和源极S脚的布线要尽可能短。欠压检测电阻器要尽可能靠近EN/UV脚。
由TNY256组成的5.5W、9VDC电源适配器电路如图3所示,交流输入电压范围为85~265V。图中U2为光磁耦合器SFH615-2,U3为可调式并联精密稳压器TL431CLP,F1为保险丝电阻器。85~265V交流电经过D1~D4桥式整流和C1、C2滤波后,得到约300V的直流高压VI。鉴于在功率MOSFET关断瞬间,脉冲变压器的漏感会产生尖峰电压,因此,由电阻器R3、C3和超快恢复二极管D5(1N4937)组成的功率MOSFET漏极钳位保护电路,可有效抑制漏极上的反向峰值电压,从而保护TNY256内的功率MOSFET不受损坏。C3选用10000pF/1kV的高压陶瓷电容器。
次级电压通过D6、C6、C7、L3和C8整充滤波后,得到9V、0.6A的直流输出。D4采用MBR360的肖特基二极管。为了抑制初、次级之间的共模干扰,在初、次级的同名端还并联一只2200pF/2kV的高压陶瓷电容C5。输出电压由精密电阻R7、R8决定,电阻R9为TL431的限流电阻。
5 TNY256的使用注意事项
TNY256在中等负载或轻负载下工作时会跳过一些时钟周期,这容易使高频变压器产生音频噪声干扰。为减小此干扰,宜选磁通密度小于0.3T的磁芯材料。此外,最好用TVS二极管和陶瓷电容构成的漏极箝位保护电路来衰减视频噪声。
使用TNY256系列时推荐的一种印制板设计如图4所示。
设计时需注意以下几点:
·连接输入滤波电容器、高频变压器初级如TNY256回路的覆铜面积应尽量小。
·DIP-8封装的TNY256系列电路是靠覆铜接地来散热的,图中打斜线的面积要足够大,确保散热良好。
·安全电容器要直接焊接在初级接地端和次级返回端之间。
·连接次级线圈、输出级整流管和滤波电容器的回路面积应尽量小,但整流管焊盘附近的覆铜要足够大,以确保散热良好。
·为减小耦合噪声,光耦晶体管到EN/UV脚和源极S脚的布线要尽可能短。欠压检测电阻器要尽可能靠近EN/UV脚。
电路 电压 电阻 MOSFET PWM 开关电源 电容 振荡器 电流 电容器 二极管 LED 比较器 变压器 相关文章:
- 基于P89C61x2/ISP1581的USB接口电路的设计(02-13)
- 行波管关断方式对应用系统可靠性的影响(06-24)
- 基于VME总线的RDC接口电路设计(06-29)
- 单芯片集成电路优化自适应转向大灯系统的设计 (07-12)
- 单片机应用系统的抗干扰技术(08-07)
- 基于FPGA的线阵CCD驱动器设计(11-26)