RF电路设计中降低寄生信号途径
RF电路板设计最重要的是不该有信号的地方要隔离信号,而该有信号的地方一定要获得信号。这就要求我们有意识地采取措施,确保信号隔离于其路径适当的部位。音调、信号、时钟及其在电路板上任何地方生成的所有谐波都可能作为寄生信号混入输出信号,甚至可能会进入混频器和转换器进而被转换、反映并混淆为寄生信号。传输掩模(Transmit mask)要求表明即便最微小的寄生信号也会阻碍产品的发布。
宽带器件支持软件定义无线电(SDR)的这一当前趋势将进一步强调降低寄生信号的重要性。由于可部署统一信号平台设计来满足多种频带需求,因此插入式RF模块可替代其中较多信号可能会相互干扰的较大电路板。包括大多数RF厂商评估板在内的小型插入式RF模块可以实现完全隔离,并具备优异的寄生信号性能,但需要使用特殊设计方法。种种通孔、顶层布线、专用接地层等布局技术虽然能够充分满足小型RF电路板的需求,但可扩展性较差。
RF布局要想降低寄生信号,就需要RF工程师发挥创造性,因为布局工具针对大规模布局进行了优化,但不一定适合电磁分析。布局和电路板评测过程中通常采用基本规则,但真正的测试是在电路板原型设计已经完成并在实验室中进行评估的时候。电源电平与线性等基本电路板功能检测完成之后,评估寄生信号性能将成为重点。在这一末期工作阶段,寄生信号需要RF工程师发挥创造性,确定寄生信号的根源并找到解决办法。但是,这种调试时间几乎不可能预测和安排,而且解决问题往往还需要使电路板运行起来,这将会造成项目延误,增加成本。
大多数RF工程师依据一些简单原理得出的基本规则可用于布局评测工作。记住以下这八条规则,不但有助于加速产品上市进程,而且还可提高工作日程的可预见性。
规则1:接地通孔应位于接地参考层开关处
流经所布线路的所有电流都有相等的回流。耦合策略固然很多,不过回流通常流经相邻的接地层或与信号线路并行布置的接地。在参考层继续时,所有耦合都仅限于传输线路,一切都非常正常。不过,如果信号线路从顶层切换至内部或底层时,回流也必须获得路径。
图1就是一个实例。顶层信号线路电流下面紧挨着就是回流。当它转移到底层时,回流就通过附近的通孔。不过,如果附近没有用于回流的通孔时,回流就要通过最近可用的接地通孔。更远的距离会产生电流环路,形成电感器。如果这种不必要的电流路径偏移,碰巧又同另一条线路交叉,那么干扰就会更严重。这种电流环路其实相当于形成了一个天线!
图1:信号电流从器件引脚经过通孔流到较低层。回流在被迫流向最近通孔改变至不同参考层之前位于信号之下。
接地参考是最佳策略,但高速线路有时候可布置在内部层上。接地参考层上下都放置非常困难,半导体厂商可能会受到引脚限制,把电源线安放在高速线路旁边。参考电流要是需要在非DC耦合的各层或各网之间切换,应紧挨着开关点安放去耦电容。
规则2:将器件焊盘与顶层接地连接起来
许多器件在器件封装底部都采用散热接地焊盘。在RF器件上,这些通常都是电气接地,而相邻焊盘点有接地通孔阵列。可将器件焊盘直接连接至接地引脚,并通过顶层接地连接至任何灌铜。如有多个路径,回流会按路径阻抗比例拆分。通过焊盘进行接地连接相对于引脚接地而言,路径更短、阻抗更低。
电路板与器件焊盘之间良好的电气连接至关重要。装配时,电路板通孔阵列中的未填充通孔也可能会抽走器件的焊膏,留下空隙。填满通孔是保证焊接到位的好办法。在评测中,还要打开焊接掩模层确认没有焊接掩模在器件下方的电路板接地上,因为焊接掩模可能会抬高器件或使其摇摆。
规则3:无参考层间隙
器件周边到处都是通孔。电源网分解成本地去耦,然后降至电源层,通常提供多个通孔以最大限度减少电感,提高载流容量,同时控制总线可降至内层。所有这些分解最终都会在器件附近完全被钳住。
每个这些通孔都会在内接地层上产生大于通孔直径自身的禁入区,提供制造空隙。这些禁入区很容易在回流路径上造成中断。一些通孔彼此靠近则会形成接地层沟,顶层CAD视图看不见,这将导致情况进一步复杂化。图2两个电源层通孔的接地层空隙可产生重叠的禁入区,并在返回路径上造成中断。回流只能转道绕过接地层禁入区,形成现在常见的发射感应路径问题。
图2:通孔周围接地层的禁入区可能重叠,迫使回流远离信号路径。即便没有重叠,禁入区也会在接地层形成鼠咬阻抗中断。
甚至"友好型"接地通孔也会为相关金属焊盘带来电路板制造工艺要求的最小尺寸规格。通孔如果非常靠近信号线路,就会产生好像顶层接地空隙被
- 微波射频行业必读书籍(02-11)
- 五款主流CMMB调谐器的特性比较(06-08)
- 基于MSP430F149的最小系统设计(02-25)
- 一种SAW RFID阅读器的信号处理电路设计(07-24)
- RF射频电路设计中常见问题(11-01)
- 超高频远距离RFID无源射频接口电路设计(07-18)