微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > TigerSHARC结构的ADSP-TS101及其应用

TigerSHARC结构的ADSP-TS101及其应用

时间:09-15 来源:互联网 点击:
4 电源供电及功耗估计

(1) 电源供电


Adsp-TS101有三个电源,其中数字3.3 V为l/0供电;数字1.2 V为DSP内核供电;模拟1.2 V为内部锁相环和倍频电路供电。Adsp-TS101要求数字3.3 V和数字1.2 V同时上电。如果无法严格同步,则应保证核电源1.2 V先上电,l/0电源3.3 v后上电。本系统在数字3.3 V输入端并联了一个大电容,而在数字1.2 v输入端并联了一个小电容。其目的就是为了保证3.3 v充电时间大于1.2 v充电时间,以便很好地解决电源供电先后的问题。

(2)外部口功耗估计

外部口的功耗主要是输出引脚(例如数据线的某个位由高到低,或由低到高)转换的功率消耗,而且该功耗与系统无关。由于这种转换的外部平均电流为0.137 A,因此,功耗为PDD=VD×lDD=3.3 V×0.137 A="0".45 W

(3)内核功耗估计

内核最大电流为1.277 A。该电流是DSP进行单指令流多数据流(SIMD)方式下,4个16位定点字乘加与2个四字读取并行操作以及进行由外部口到内部存储器DMA操作所需的电流。实际上,DSP内核电流大小还和内核工作频率有关,图3所示是其内核电流与频率的关系曲线。因此,供给DSP内核电流可根据不同的并行处理任务和内核工作频率来确定。若并行处理较少,工作频率低,所需电流就小。这样,最大内核功耗为PDD=VDD×IDD=1.2 V×1.277 A="1".534 W。



结 语

本文介绍了Adsp-TS101芯片及其在雷达信号处理方面的应用。该应用系统充分利用了Adsp-TS101高速的运算能力、数据吞吐量大以及易于多片连接,可对数据进行串行处理的特点。文中还讨论了DSP应用过程中的电源设计和功耗问题,因而具有一定的工程指导意义。目前该系统已成功用于某雷达系统。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top