微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 单片机系统的低功耗设计的策略

单片机系统的低功耗设计的策略

时间:09-03 来源:互联网 点击:
在嵌入式应用中,系统的功耗越来越受到人们的重视,这一点对于需要电池供电的便携式系统尤其明显。降低系统功耗,延长电池的寿命,就是降低系统的运行成本。对于以单片机为核心的嵌入式应用,系统功耗的最小化需要从软、硬件设计两方面入手。

随着越来越多的嵌入式应用使用了实时操作系统,如何在操作系统层面上降低系统功耗也成为一个值得关注的问题。限于篇幅,本文仅从硬件设计和应用软件设计两个方面讨论。

1 硬件设计

选用具有低功耗特性的单片机可以大大降低系统功耗。可以从供电电压、单片机内部结构设计、系统时钟设计和低功耗模式等几方面考察一款单片机的低功耗特性。

1.1 选用尽量简单的CPU内核

在选择CPU内核时切忌一味追求性能。8位机够用,就没有必要选用16位机,选择的原则应该是“够用就好”。现在单片机的运行速度越来越快,但性能的提升往往带来功耗的增加。一个复杂的CPU集成度高、功能强,但片内晶体管多,总漏电流大,即使进入STOP状态,漏电流也变得不可忽视;而简单的CPU内核不仅功耗低,成本也低。

1.2 选择低电压供电的系统

降低单片机的供电电压可以有效地降低其功耗。当前,单片机从与TTL兼容的5 V供电降低到3.3 V、3 V、2 V乃至1.8 V供电。供电电压降下来,要归功于半导体工艺的发展。从原来的3 μm工艺到现在的0.25、0.18、0.13 μm工艺, CMOS电路的门限电平阈值不断降低。低电压供电可以大大降低系统的工作电流,但是由于晶体管的尺寸不断减小,管子的漏电流有增大的趋势,这也是对降低功耗不利的一个方面。

目前,单片机系统的电源电压仍以5 V为主,而过去5年中,3 V供电的单片机系统数量增加了1倍,2 V供电的系统也在不断增加。再过五年,低电压供电的单片机数量可能会超过5 V电压供电的单片机。如此看来,供电电压降低将是未来单片机发展的一个重要趋势。

1.3 选择带有低功耗模式的系统

低功耗模式指的是系统的等待和停止模式。处于这类模式下的单片机功耗将大大小于运行模式下的功耗。过去传统的单片机,在运行模式下有wait和stop两条指令,可以使单片机进入等待或停止状态,以达到省电的目的。

等待模式下,CPU停止工作,但系统时钟并不停止,单片机的外围I/O模块也不停止工作;系统功耗一般降低有限,相当于工作模式的50%~70%。

停止模式下,系统时钟也将停止,由外部事件中断重新启动时钟系统时钟,进而唤醒CPU继续工作,CPU消耗电流可降到μA级。在停止模式下,CPU本身实际上已经不消耗什么电流,要想进一步减小系统功耗,就要尽量将单片机的各个I/O模块关掉。随着I/O模块的逐个关闭,系统的功耗越来越小,进入停止模式的深度也越来越深。进入深度停止模式无异于关机,这时的单片机耗电可以小于20 nA。其中特别要提示的是,片内RAM停止供电后,RAM中存储的数据会丢失,也就是说,唤醒CPU后要重新对系统作初始化。因此在让系统进入深度停止状态前,要将重要系统参数保存在非易失性存储器中,如EEPROM中。深度停止模式关掉了所有的I/O,可能的唤醒方式也很有限,一般只能是复位或IRQ中断等。

保留的I/O模块越多,系统允许的唤醒中断源也就越多。单片机的功耗将根据保留唤醒方式的不同,降至1μA至几十μA之间。例如,用户可以保留外部键盘中断,保留异步串行口(SCI)接收数据中断等来唤醒CPU。保留的唤醒方式越多,系统耗电也就会多一些。其他可能的唤醒方式还有实时钟唤醒、看门狗唤醒等。停机状态较浅的情况下,外部晶振电路还是工作的。

图1以Freescale的HCS08单片机为例,给出不同运行模式下的系统功耗。HCS08是8位单片机,有多个系列,各系列I/O模块数目有所不同,但低功耗模式下的电流消耗大致相同。

图1 HCS08单片机各模式下的耗电

以R系列单片机为例:在室温(25℃)下,不包括I/O口的负载,以2 V供电,将可编程锁相环时钟设为16 MHz(总线时钟8 MHz),典型电流值为2.6 mA,当温度升高到85℃时,供电电流也升高到3.6 mA;而采用3 V供电,这一组数据升高至3.8 mA和4.8 mA。用2 V供电,直接使用外部晶振2 MHz(总线时钟1 MHz)时,典型运行电流降至450 μA。在等待状态下,因时钟并没有停止,耗电情况和时钟频率有很大关系,节省的功耗有限;而进入轻度停止(stop3),以外部中断唤醒,电流消耗在0. 5 μA左右。在中度停止态(stop2),功耗可进一步降低。使用内部1 kHz的时钟,保持1个运行的时钟,周期性唤醒CPU,所增加的电流约为0.3 μA。在深度停止态(stop1),RAM的数据也不再保留,只能通过外部复位重启系统,此时的电流消耗可降到20 nA。以上数据都是在室温下测量所得。当环境温度升高到85℃时,电流
消耗可能增加3~5倍。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top