32位嵌入式CPU中系统控制协处理器的设计与实现
时间:07-27
来源:互联网
点击:
控制通路与数据通路的划分
数字电路系统的正常运作过程中存在数据流(包括一般意义上的数据、指令和地址)和控制流。而数据流和控制流是相对独立的:数据流实现的逻辑相对简单,但有很多位数据并行;而控制流的逻辑较复杂,绝大多数是1位或几位的控制信号。因此,控制通路一般不采用全定制设计;而数据通路的全定制设计就具有高性能、低功耗、低成本的优势。
协助TLB进行虚实地址转换是CP0的主要功能之一。TLB属于系统的特权资源,只有CP0有权对其进行访问,因此CP0与TLB之间的连线较多,数据交换的时延也比较关键。同时,PC模块与CP0的数据交换也非常重要。因此,CP0单元在版图上最好同时靠近TLB和PC模块。本设计将CP0中与TLB相关的逻辑与寄存器独立为CP0T,放在MMU与PC模块之间;CP0的其余部分归为CP0E,放在PC下部,也就是整块芯片的最下端。如图1所示。
图1. CP0单元与临近单元的连接示意图
电路设计
本设计中使用的电路输入工具为Cadence公司的Composer。设计时,将HDL描述转化为电路描述后输入到Composer中。然后,通过形式验证来确保所设计的电路与RTL代码一致。电路设计的好坏很大程度上要取决于设计者的经验和技巧。
电路的定制设计主要指的是,在Composer环境中手工设计晶体管级的电路。电路参数的确定由Synopsys的电路仿真工具Hspice协助完成。将从设计好的电路中抽出的网表输入到Hspice中,仿真计算出电路的时延,再根据时延来修改电路MOS管的参数。
为了减少全定制设计的工作量,电路设计要建立模块的微体系结构。其中CP0的基本单元确定如下:基本的CP0寄存器(时钟上沿同步寄存器) ;32位比较器;32位加法器;多选一选择器(包括2选1、3选1和4选1 MUX);驱动器(即反相器;其尺寸参数化以适应不同驱动要求)。
加法器基本采用了超前进位加法器的思想,然后在整体上分成两个16位加法器的模块,模块间采用进位选择加法器的思想,从而大大提高了整个电路的速度。但其面积比全部采用超前进位加法器时要大20%左右。
设计出来的电路逻辑是否正确,时延是否满足要求,分别需要做功能验证和电路仿真。在验证了各个小模块的正确性之后,需验证小模块之间的逻辑连接正确性,最后对整个模块进行验证,进一步分析电路找出模块中的最长路径,通过仿真、更改电路、再仿真的过程,来确定该模块是否能达到预期的逻辑设计要求。
版图的全定制设计
版图设计是根据电路功能和性能的要求以及工艺条件的限制(如线宽、间距、制版设备所允许的基本图形等),设计集成电路制造过程中必需的光刻掩膜版图。版图设计与集成电路制造工艺技术紧密相连,是集成电路设计的最终目标。
在设计过程中,为了降低设计的复杂度,采用混合设计模式,即全定制和标准单元设计相结合的设计方法。这样既有利于保证电性能的要求,又能减小设计周期,是一种较为理想的设计模式。
在全定制版图中,设计过程分为两步完成,每个大单元电路总是由各种基本电路组合而成,所以第一步是绘制基本电路的版图,画完后做DRC和LVS,保证基本电路的正确性。第二步用这些基本电路来组合成大的单元。
全定制芯片设计可以根据数据通路电路的规则手工设计出合理的版图。版图设计中尽量保证各个部分的规整和对称,使其易于扩展。版图的布局中使联系较多的单元尽量靠近,从而缩短互连线的长度,减小每个单元的面积和时延,降低器件的负载电容,采取的具体措施如下:
1) 增加地与衬底、电源与阱的接触,在没有器件和走线的空白处多打接触孔,并且将其与电源或地连接,有利于收集噪声电流、稳定电位、减小干扰和被干扰;
2) 形成网状的电源地线网络;
3) 避免同层或上下两层中长金属线的平行走线,对噪声敏感的线尽量布得短;
4) 避免首尾循环的走线;
5) 在满足设计规则的前提下,尽量减小MOS管的有源区面积,以减小寄生电容,提高工作速度;
6) 在数据通路设计中,要为金属连线留下一些备用位置。
控制通路与数据通路的集成设计及验证
逻辑层次
控制部分直接用行为级的RTL代码,数据通路部分由从全定制电路导出的结构化RTL代码,得到全模块的逻辑描述。
可采用向量进行验证,与采用RTL(或C模型)进行验证的结果(trace文件)进行比对。
数字电路系统的正常运作过程中存在数据流(包括一般意义上的数据、指令和地址)和控制流。而数据流和控制流是相对独立的:数据流实现的逻辑相对简单,但有很多位数据并行;而控制流的逻辑较复杂,绝大多数是1位或几位的控制信号。因此,控制通路一般不采用全定制设计;而数据通路的全定制设计就具有高性能、低功耗、低成本的优势。
协助TLB进行虚实地址转换是CP0的主要功能之一。TLB属于系统的特权资源,只有CP0有权对其进行访问,因此CP0与TLB之间的连线较多,数据交换的时延也比较关键。同时,PC模块与CP0的数据交换也非常重要。因此,CP0单元在版图上最好同时靠近TLB和PC模块。本设计将CP0中与TLB相关的逻辑与寄存器独立为CP0T,放在MMU与PC模块之间;CP0的其余部分归为CP0E,放在PC下部,也就是整块芯片的最下端。如图1所示。
图1. CP0单元与临近单元的连接示意图
电路设计
本设计中使用的电路输入工具为Cadence公司的Composer。设计时,将HDL描述转化为电路描述后输入到Composer中。然后,通过形式验证来确保所设计的电路与RTL代码一致。电路设计的好坏很大程度上要取决于设计者的经验和技巧。
电路的定制设计主要指的是,在Composer环境中手工设计晶体管级的电路。电路参数的确定由Synopsys的电路仿真工具Hspice协助完成。将从设计好的电路中抽出的网表输入到Hspice中,仿真计算出电路的时延,再根据时延来修改电路MOS管的参数。
为了减少全定制设计的工作量,电路设计要建立模块的微体系结构。其中CP0的基本单元确定如下:基本的CP0寄存器(时钟上沿同步寄存器) ;32位比较器;32位加法器;多选一选择器(包括2选1、3选1和4选1 MUX);驱动器(即反相器;其尺寸参数化以适应不同驱动要求)。
加法器基本采用了超前进位加法器的思想,然后在整体上分成两个16位加法器的模块,模块间采用进位选择加法器的思想,从而大大提高了整个电路的速度。但其面积比全部采用超前进位加法器时要大20%左右。
设计出来的电路逻辑是否正确,时延是否满足要求,分别需要做功能验证和电路仿真。在验证了各个小模块的正确性之后,需验证小模块之间的逻辑连接正确性,最后对整个模块进行验证,进一步分析电路找出模块中的最长路径,通过仿真、更改电路、再仿真的过程,来确定该模块是否能达到预期的逻辑设计要求。
版图的全定制设计
版图设计是根据电路功能和性能的要求以及工艺条件的限制(如线宽、间距、制版设备所允许的基本图形等),设计集成电路制造过程中必需的光刻掩膜版图。版图设计与集成电路制造工艺技术紧密相连,是集成电路设计的最终目标。
在设计过程中,为了降低设计的复杂度,采用混合设计模式,即全定制和标准单元设计相结合的设计方法。这样既有利于保证电性能的要求,又能减小设计周期,是一种较为理想的设计模式。
在全定制版图中,设计过程分为两步完成,每个大单元电路总是由各种基本电路组合而成,所以第一步是绘制基本电路的版图,画完后做DRC和LVS,保证基本电路的正确性。第二步用这些基本电路来组合成大的单元。
全定制芯片设计可以根据数据通路电路的规则手工设计出合理的版图。版图设计中尽量保证各个部分的规整和对称,使其易于扩展。版图的布局中使联系较多的单元尽量靠近,从而缩短互连线的长度,减小每个单元的面积和时延,降低器件的负载电容,采取的具体措施如下:
1) 增加地与衬底、电源与阱的接触,在没有器件和走线的空白处多打接触孔,并且将其与电源或地连接,有利于收集噪声电流、稳定电位、减小干扰和被干扰;
2) 形成网状的电源地线网络;
3) 避免同层或上下两层中长金属线的平行走线,对噪声敏感的线尽量布得短;
4) 避免首尾循环的走线;
5) 在满足设计规则的前提下,尽量减小MOS管的有源区面积,以减小寄生电容,提高工作速度;
6) 在数据通路设计中,要为金属连线留下一些备用位置。
控制通路与数据通路的集成设计及验证
逻辑层次
控制部分直接用行为级的RTL代码,数据通路部分由从全定制电路导出的结构化RTL代码,得到全模块的逻辑描述。
可采用向量进行验证,与采用RTL(或C模型)进行验证的结果(trace文件)进行比对。
MIPS 集成电路 电路 Cadence 仿真 比较器 电容 电流 Mentor 中芯国际 相关文章:
- 祥硕科技采用一系列MIPSTM 内核进行多媒体SoC 开发(10-20)
- MIPS科技将Android 带进家庭应用(01-16)
- MIPS 科技和Virage Logic结成合作伙伴提供优化嵌入式内存IP(03-06)
- 宏芯科技选用MIPS科技处理器IP开发新一代多媒体IC(03-03)
- MIPS走向更多(11-10)
- 破解市场迷思: MIPS? -最适用于设计MCU的处理器(03-02)