微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > 基于ARM和FPGA的全彩独立视频LED系统设计

基于ARM和FPGA的全彩独立视频LED系统设计

时间:12-28 来源:互联网 点击:
  目前,显示屏按数据的传输方式主要有两类:一类是采用与计算机显示同一内容的实时视频屏;另一类为通过USB、以太网等通信手段把显示内容发给显示屏的独立视频源显示屏,若采用无线通信方式,还可以随时更新显示内容,灵活性高。此外,用一套嵌入式系统取代计算机来提供视频源,既可以降低成本,又具有很高的可行性和灵活性,易于工程施工。因此,独立视频源LED显示系统的需求越来越大。
  本系统采用ARM+FPGA的架构,充分利用了ARM的超强处理能力和丰富的接口,实现真正的网络远程操作,因此不仅可以作为一般的LED显示屏控制器,更可以将各显示节点组成大型的户外广告传媒网络。而FPGA是一种非常灵活的可编程逻辑器件,可以像软件一样编程来配置,从而可以实时地进行灵活而方便的更改和开发,提高了系统效率。

  1 独立视频LED系统

  LED显示屏的主要性能指标有场扫描频率、分辨率、灰度级和亮度等。分辨率指的是控制器能控制的LED管的数量,灰度级是对颜色的分辨率,而亮度高则要求每个灰度级的显示时间长。显然,这3个指标都会使得场扫描频率大幅度降低,因此需要在不同的场合对这些指标进行适当的取舍。通常灰度级、亮度和场扫描频率由单个控制器决定,而分辨率可以通过控制器阵列的方式得到很大的提高。这样,每个控制器的灰度和亮度很好,场扫描频率也适当,再通过控制器阵列的形式,实现大的控制面积,即可实现颜色细腻的全彩色超大屏幕的LED显示控制器。独立视频LED系统完全脱离计算机的控制,本身可以实现通信、视频播放、数据分发、扫描控制等功能。为了实现大屏幕、全彩色、高场频,本系统采用控制器阵列模式,如图1所示。

  

  图1 独立视频LED系统结构


  系统可以通过网络接口(以太网接口)由网络服务器端更新本地的数据,视频播放部分则通过对该数据进行解码,获得RGB格式的视频流。再通过数据分发单元,将这些数据分别发送到不同的LED显示控制器上,控制器将播放单元提供的数据显示到全彩色大屏幕LED上。

  2 通信接口和视频播放单元

  本系统的通信接口和视频播放部分由ARM uClinux实现。ARM (Advanced RISC Machine)是英国ARM公司设计开发的通用32位RISC微处理器体系结构,设计目标是实现微型化、低功耗、高性能的微处理器。Linux作为一种稳定高效的开放源码式操作系统,在各个领域都得到了广泛的应用,而uClinux则是专门针对微控制领域而设计的Linux系统,具有可裁减、内核小、完善的网络接口协议和接口、优秀的文件系统以及丰富的开源资源等优点,正被越来越多的嵌入式系统采纳。系统中使用Intel XScale系列的PXA255芯片,与ARM v5TE指令集兼容,沿用了ARM的内存管理、中断处理等机制,并在此基础上做了一些扩展,如DMA控制器、LCD控制器等。由于ARM9的处理能力有限,目前只用其播放320×240像素的视频。
  系统视频播放的数据来自于系统中的SD存储卡(Secure Digital Memory Card)。更新SD卡的数据有两种方式:一种是用计算机更新SD卡的数据;另一种是通过网络接收服务器的数据,直接由ARM更新SD卡。此外,播放器也可以直接播放网络传送的MPEG-4格式数据口由于XScale未提供物理层接口,若想实现网络功能需外接一片物理层芯片。本系统选用SMSC公司的高性能100M以太网控制器LAN9118。

  3 视频数据分发

  由于控制器采用阵列模式,因此需要对视频源提供的数据进行分发,将不同行列的数据正确地送入不同的控制器。
  3.1 数据分发单元方案
  本系统中的LED控制器灰度级高达3×12位(可显示多达64G种颜色)、控制区域为128×128点。系统播放单元提供的数据为320×240像素,因此需要分解成6个LED控制器来控制(见图1)。因此,需要将PXA255提供的RGB数据分3组发送到这6块控制器,以FPGA实现,方案如图2所示。

  

  图2 数据分发单元方案


  LCD接口子模块接收PXA255 LCD接口的数据和控制信号,将这些输入的数据进行逐点校正之后存入SDRAM,然后将该场数据分成3 组,每组128行(最后一组只有64行,为了后面控制板的一致性,此处由总线调度器补零),同时发送,之后由LED显示控制器处理。
  3.2 存储器分配和总线调度
  为了方便各模块间的接口,有利于不同时钟域的数据同步,系统的存储器采用两级存储模式,即SDRAM作为主存储器,而各模块也有相应FIFO作为Cache, SDRAM具有容量大、带宽高、价格便宜等优点;但是控制比较复杂,每次读写有多个控制和等待周期。因此为了提高效率,通常采用地址递增的碎发读写方式,而不能像SRAM那样随时读取任意地址的数据。
  本方案采用完全动态的内存分配机制,即每个模块请求时,如果不是同一场数据,则可以分配到一块新的内存,而一旦该内存的数据不再有效,则释放这块内存。这样,每块内存都有自己的属性,标志是使用中的内存,还是空闲内存,以及当前内存中的数据是否在等待被使用的队列中,因此内存需要分成3块。其中一块存储逐点校正参数,一块存储当前场数据,另一块存储上一场数据(即正在发送的数据)。这就要求在一个场同步周期内需要将数据发送完毕,而这一要求是完全可以达到的。
  总线调度是本模块的核心部分,必须精确计算总线带宽的占用情况,确定各部分FIFO的深度,以保证各个FIFO不会出现溢出或读空的现象。
  总线调度器需要调度3块存储器,还需要为每一个模块维护一个偏移地址的首地址,以及一个偏移地址计数寄存器。为了便于计算偏移地址,用SDRAM物理上的两行存储一行的数据,而将多余部分空余。
  总线调度器的仲裁算法为:逐点校正参数与校正后数据写人SDRAM的优先级一样,采用先来先得的方式占用总线,分别由各自FIFO的指针来触发总线占用。一场数据写入SDRAM完毕之后,开始发送。需要依次读出第n,n+ 128,n+ 256行的数据给数据发送FIFO0,1,2,等待数据发送单元启动发送。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top