微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > 数字电位器与机械电位器技术性能大比拼

数字电位器与机械电位器技术性能大比拼

时间:12-06 来源:互联网 点击:

表1:机械电位器的材料对比

  

  数字电位器
  ADI公司提供最宽的阻值可选范围:1k至1M。
  电阻容许误差之前为±20%,但现在已经有所下降。ADI公司目前提供容许误差为±8%的电阻,或经校准后容许误差为±1%的精密电阻。
  另外,具有非易失性EEPROM的数字电位器通常可存储容许误差,这些误差可通过控制器读回,并被用于校正外部电阻。
  任意给定代码下的温度依赖性和温度系数,都取决于两个因素:电阻元件和开关电阻。开关电阻较小,但在较低代码处,所选择的电阻也很小时,由于阻值非常接近,开关电阻变得很明显。开关电阻的温度系数所影响到的代码数,直接取决于标称电阻值,该区域的典型温度系数约为600 ppm/°C.
  电阻元件所采用的主要材料有两种:多晶硅或薄膜金属。
  多晶硅是一种常用材料,它与石墨类似,对于温度的依赖性非常高,温度系数高达600 ppm/°C.薄膜金属电阻的温度系数则较低,大约为35 ppm/°C.ADI公司数据手册中给出了任意给定代码下的温度系数图表。
  由于尺寸较小,数字电位器的功耗也很小,在数十毫瓦以内。与机械电位器相比,在所有温度范围内,该功率保持恒定。数字电位器最大端电压由供电轨来限定。就不同的数字电位器而言,其电压范围可从2.3V至33V.但是,任何情况下,最大电流通常都不会超过几毫安。

  附加技术规格

  使用数字电位器时,开关会引入一些与机械电位器不相关的技术规格。
  由于开关中存在寄生电容,所以有带宽限制。这也就决定了,在游标内,可穿过电阻端的最大信号频率的衰减量小于3dB.该传递公式与低通滤波器相似。
  电容与所选择的标称电阻无关,而仅仅取决于内部开关设计。因此,使用较低的标称电阻值可获得较高的带宽。表2为一个示例。

  表2 AD8400最大频率和标称电阻

  


  游标电阻的非线性度会增加谐波失真程度。总谐波失真(THD)衡量信号在通过电阻后所下降的程度。图5显示了一个放大的图示。

  

  图5. THD效应


  例如,如果总谐波失真(THD)为-80 dB,则信号下降程度为10-80/20 = 0.1 mV/VIN,因此如果信号为1 V p-p,则总信号失真为0.1 mV × 2 = 0.2 mV.
  数字电位器的总谐波失真范围为-60 dB到-106 dB,是音频应用的理想选择。
  非易失

  有些应用要求数字电位器具备非易失存储功能,两种类型的器件(易失和非易失存储器)在市场上都很普及。非易失数字电位器更接近于机械电位器,它能够在不同的外部条件(是否有外部电源供电)下保持阻值。
  音频设备需要内部储存音量设置,设备重新上电时要求电位器保持相同的电阻值,即使在电源完全关闭的情况下。
  MAX5427/MAX5428/MAX5429系列数字电位器提供独特的编程功能。这些器件为具有一次性编程(OTP)存储器,将电位器抽头的上电复位(POR)位置设置在用户定义的数值(抽头位置保持可调,但重新上电后始终返回到固定的设置位置)。此外,OTP还可以禁止接口通信,将抽头锁存到所要求的固定位置,避免进一步的调节。这种情况下,器件成为一个固定比值的电阻分压器,而非电位器。

  音频设计考虑

  电位器具有对数抽头和线性抽头,高保真音频设备的音量调节一般选用对数电位器,因为考虑到人耳的非线性滤波特性,对数抽头可以获得线性音量调节。目前,高集成度数字电位器可以在单芯片内集成六路独立的电位器,以支持多声道音频系统,例如:立体声、杜比环绕立体声系统。
  音频应用中,特别是在数字电位器调节分辨率较低(32级)时,需要特别注意抽头级间变化过程。如果抽头不是在0V时发生变化,音频系统会产生喀嗒声和噼噗声(图6)。幸运的是,新一代数字电位器具有所谓的过零检测功能,能够在抽头跳变时降低音频噪声。内部过零和超时检测电路确保抽头在检测到过零(0V)信号或经过50ms延时(具体取决于首先发生的条件)后跳变。

  

  图6. 在0V电平切换时,音频喀嗒声和噼噗声的影响


  除了上述数字电位器中的模拟电路外,每个数字电位器还包含一个数字接口。绝大多数电位器可通过传统的I²C或SPI™编程,有些则提供便利的上/下调节接口。

  性能改善

  与机械电位器相比,数字电位器还具备另一优势。数字电位器的调节抽头直接安装在电路板的信号通路,利用电子调节避免了复杂、昂贵的机械调节装置。数字电位器改善了噪声抑制指标,消除了机械电位器接口电缆的拾取噪声。
  传统的数字电位器可直接替代机械电位器,具有相同的工作方式,无需过多的说明。但是,在一些特殊应用中,例如:低成本立体声音量控制,需要一些附加说明。对于音频这一特殊应用,一般要求工作在较宽的电压范围,以支持较宽的音频信号范围。一般选择对数抽头,抽头级数增加时,衰减分贝数随之增大,非常适合人耳的频响特性。有些器件具有静音功能,提供更大的衰减(例如:30dB)。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top