家用电器中的无传感器AC电机的控制实现
时间:12-07
来源:互联网
点击:
全世界对水和能源保护,以及对新产品和服务的总体环保性的关注无疑影响着家用电器市场。实际监管标准和建议,无论是一国性的还是多国性的(EU标准),都对新一代家用电器,特别是洗衣机、烘干机、洗碗机和电冰箱提出了一些基本要求。为了满足这些要求同时降低系统成本,必须部署配备有适当软件的增强型微控制器。
对于家用电器行业的制造商来说,我们建议采用基于数字信号控制器(DSC)的解决方案,它将数字信号处理器的处理能力与微控制器的功能和易用性融入一粒芯片。一套灵活的外设能够让制造商实现众多功能,例如标准电机驱动算法、高级控制算法、精密反馈信号传感、功率因数校正方案、与外部环境的通信等等。
采用可变速度电机驱动让制造商有机会使用更精密的控制程序,这将增强设备性能,提高总体能效。因此,配备了可变速度驱动和智能控制的家用电器胜过了那些配备无控制的、固定速度电机驱动的家用电器。
由于将电机速度固定在预先设定的水平上或直接从AC主电源运行电机,家用电器中大多数电机驱动的控制都非常简单,无需额外控制电子。之所以交流干线供电单相感应电机(ACIM)被广泛采用,是因为它的低成本、强劲性和可靠性。然而,ACIM解决方案也有明显的缺陷,如效率低、有效速度控制较弱等,这阻碍了旨在增强产品灵活性、满足监管要求以及客户预期的控制改进控制。与单相ACIM相比,可变速度驱动通过保持扭矩控制,满足了能效要求,从而提高了设备总体效率。
AC电机选择
可以驱动家用电器的电机有不同类别,如ACIM、永磁(PM)电机或开关磁阻(SR)电机。电子驱动效率和电动机效率产品决定系统总能效。
一般而言,要用ACIM实现可变速度,需要为其供应可变频率和电压,这被称为恒定电压/频率控制。采用矢量控制,ACIM速度驱动效率可以进一步提高。这要求与转轮连接的速度或位置传感器传感准确的速率信息,但增加传感器、连接器和相应布线会增加成本。
PM电机采用永磁建立通量,而不是从定子绕组建立。用永磁代替电磁激振有几个优势,最明显的优势是没有激振损耗,这意味着PM电机比DC电机具有更高的功率密度。PM电机没有机械转向器,而且由于没有通量导向电流,功率密度也超过AC感应电机。总体效率接近90%,而单相ACIM效率只有大约70%。对家用电器来说,永久激振同步电机是极具吸引力的解决方案,但它们不能通过将AC电源应用于定子绕组运行。
如果能够控制电动机,优化供应能源,总体电子功耗最多可降低30%。可变速度驱动的控制器实际上是通过调节供应给电机的电源频率,控制AC电动机的转速。电子可变速度驱动能够让电动机在其全速范围内持续运行。可变速度驱动的整个系统包括EMI过滤器、输入整流器、板上DC电源、DSC、信号调节电路、功率逆变器和栅极驱动器。
电机控制策略
开放回路标量控制是可变速度驱动最流行的控制策略,主要与ACIM一起使用。标量控制基于供应电压频率的变化。电压波动幅度与电压频率成比例,并随着频率变化而变化。这种方法要求可以由8位微控制器进行处理的适度计算功率。
这种简便方法的最大优点是它是一种无传感器模式,控制算法不需要角速度或实际转子位置信息。然而,速度取决于外部负载扭矩是一个明显的缺点,会导致动态性能的降低。正因为此,标量控制下的电动机必须超过标准尺寸,以便提供负载瞬变所需的扭矩。此外,标量方法还会导致系统效率低下、公用设施网络中的功率因数退化和运行嘈杂。在该控制方法中,能效可以降到理论最大值的50%。基于电机型号的方法估算进行机器的电气位置信息编码的电动势。
然而,市场需求要求尽可能高的动态性能和操作速度范围。作为电气驱动的创新方法,AC机器的矢量控制(磁场定向控制)较之标量控制具有非常好的性能。矢量控制消除了恒定电压/频率控制的多数缺点。
在矢量控制系统内,同步帧电流调节器已经成为逆变器电流调节的行业标准。反向Park参考帧转换功能计算与转子磁场同步的参考帧内部的定子电流和电压。当在旋转参考帧中观察时,所有电气变量都有DC稳定状态值,使简单PI调节器能够提供零稳定状态误差。除此之外,还可以设置调节系统,将电流矢量分解为磁场发生器和扭矩发生器。
内部电流回路计算创建理想扭矩和通量电流所需的直接和正交定子电压。Park功能将这些电压转换成固定参考帧中的三相AC定子电压需求。电机电流呈正弦曲线,因此产生平滑扭矩,最大限度地减少了噪音和机械振动。外部速度回路调节所采用的扭矩幅度,与正交扭矩电流成正比,能够保持必要角速度。为了把操作速度范围有效地提高到基本速度以上,我们又增加了一条通量弱化回路,处理定向定子通量电流。
对于家用电器行业的制造商来说,我们建议采用基于数字信号控制器(DSC)的解决方案,它将数字信号处理器的处理能力与微控制器的功能和易用性融入一粒芯片。一套灵活的外设能够让制造商实现众多功能,例如标准电机驱动算法、高级控制算法、精密反馈信号传感、功率因数校正方案、与外部环境的通信等等。
采用可变速度电机驱动让制造商有机会使用更精密的控制程序,这将增强设备性能,提高总体能效。因此,配备了可变速度驱动和智能控制的家用电器胜过了那些配备无控制的、固定速度电机驱动的家用电器。
由于将电机速度固定在预先设定的水平上或直接从AC主电源运行电机,家用电器中大多数电机驱动的控制都非常简单,无需额外控制电子。之所以交流干线供电单相感应电机(ACIM)被广泛采用,是因为它的低成本、强劲性和可靠性。然而,ACIM解决方案也有明显的缺陷,如效率低、有效速度控制较弱等,这阻碍了旨在增强产品灵活性、满足监管要求以及客户预期的控制改进控制。与单相ACIM相比,可变速度驱动通过保持扭矩控制,满足了能效要求,从而提高了设备总体效率。
AC电机选择
可以驱动家用电器的电机有不同类别,如ACIM、永磁(PM)电机或开关磁阻(SR)电机。电子驱动效率和电动机效率产品决定系统总能效。
一般而言,要用ACIM实现可变速度,需要为其供应可变频率和电压,这被称为恒定电压/频率控制。采用矢量控制,ACIM速度驱动效率可以进一步提高。这要求与转轮连接的速度或位置传感器传感准确的速率信息,但增加传感器、连接器和相应布线会增加成本。
PM电机采用永磁建立通量,而不是从定子绕组建立。用永磁代替电磁激振有几个优势,最明显的优势是没有激振损耗,这意味着PM电机比DC电机具有更高的功率密度。PM电机没有机械转向器,而且由于没有通量导向电流,功率密度也超过AC感应电机。总体效率接近90%,而单相ACIM效率只有大约70%。对家用电器来说,永久激振同步电机是极具吸引力的解决方案,但它们不能通过将AC电源应用于定子绕组运行。
如果能够控制电动机,优化供应能源,总体电子功耗最多可降低30%。可变速度驱动的控制器实际上是通过调节供应给电机的电源频率,控制AC电动机的转速。电子可变速度驱动能够让电动机在其全速范围内持续运行。可变速度驱动的整个系统包括EMI过滤器、输入整流器、板上DC电源、DSC、信号调节电路、功率逆变器和栅极驱动器。
电机控制策略
开放回路标量控制是可变速度驱动最流行的控制策略,主要与ACIM一起使用。标量控制基于供应电压频率的变化。电压波动幅度与电压频率成比例,并随着频率变化而变化。这种方法要求可以由8位微控制器进行处理的适度计算功率。
这种简便方法的最大优点是它是一种无传感器模式,控制算法不需要角速度或实际转子位置信息。然而,速度取决于外部负载扭矩是一个明显的缺点,会导致动态性能的降低。正因为此,标量控制下的电动机必须超过标准尺寸,以便提供负载瞬变所需的扭矩。此外,标量方法还会导致系统效率低下、公用设施网络中的功率因数退化和运行嘈杂。在该控制方法中,能效可以降到理论最大值的50%。基于电机型号的方法估算进行机器的电气位置信息编码的电动势。
然而,市场需求要求尽可能高的动态性能和操作速度范围。作为电气驱动的创新方法,AC机器的矢量控制(磁场定向控制)较之标量控制具有非常好的性能。矢量控制消除了恒定电压/频率控制的多数缺点。
在矢量控制系统内,同步帧电流调节器已经成为逆变器电流调节的行业标准。反向Park参考帧转换功能计算与转子磁场同步的参考帧内部的定子电流和电压。当在旋转参考帧中观察时,所有电气变量都有DC稳定状态值,使简单PI调节器能够提供零稳定状态误差。除此之外,还可以设置调节系统,将电流矢量分解为磁场发生器和扭矩发生器。
内部电流回路计算创建理想扭矩和通量电流所需的直接和正交定子电压。Park功能将这些电压转换成固定参考帧中的三相AC定子电压需求。电机电流呈正弦曲线,因此产生平滑扭矩,最大限度地减少了噪音和机械振动。外部速度回路调节所采用的扭矩幅度,与正交扭矩电流成正比,能够保持必要角速度。为了把操作速度范围有效地提高到基本速度以上,我们又增加了一条通量弱化回路,处理定向定子通量电流。
电子 电动机 电压 传感器 连接器 电流 电路 逆变器 飞思卡尔 MCU DSP 相关文章:
- LCD TV整体电源解决方案-“GreenEngine?”技术(02-23)
- 在消费电子应用中考虑使用OTP存储器(04-13)
- 晶体元件在电子器件中不可缺(05-12)
- 用于移动电子设备的电路保护方案(11-08)
- 耳机设计:品质VS效率(01-07)
- SMARTCAR软件平台实现汽车电子系统软件的整体设计(03-30)