微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > 便携式电子产品的应用层和后台节能技术分析

便携式电子产品的应用层和后台节能技术分析

时间:10-09 来源:互联网 点击:
    • 2. 电压调节  

      如果芯片的工作频率低于其最高上限,很多时候可以调低工作电压,并且数字逻辑电路仍有足够的时序余量。只要因应频率的转变调节电压,便可大幅降低功耗,以及大幅提高能源效益。动态电压调节(DVS)功能基本上通过开放环路控制系统实现,办法是首先设定多个不同的频率与电压的固定组合,每当工作频率有变,电压便会根据与该频率相配的电压值做出相应修改。另一方面,自适应电压调节(AVS)功能则通过闭环电压控制系统实现,方法是利用片上传感器决定最低可予接受的供电电压,其优点是比采用开环的动态电压调节方式节省更多电能。

      CMOS 功耗是开关(动态)功率及漏电功率的总和:  

      P=PSWITCH+PLEAKAGEC×VDD2Af+VDD×ILEAKAGE  

      上述公式中:  

      C 是数字系统的开关电容,VDD是供电电压,f是开关时钟频率,A是开关活动因子,ILEAKAGE是漏电电流。  

      动态电压调节技术采用列表的方法,将不同的频率与工作所需的供电电压配对,显示以某一频率工作所需的供电电压。每一时钟频率所需的供电电压会因不同产品的不同要求而异,而且有关的电压值必定设定为最糟糕情况下所需的电压,以便满足不同芯片工艺技术及不同系统工作温度的要求。图1显示动态电压调节系统的结构框图。换言之,频率会调低,而供电电压也会随着调低。由于上述有关功耗的公式之中的两个可变项f及VDD2都减小,因此系统的功耗会大幅下降。当系统任务管理器确定工作频率需要增加,功率管理单元将首先要求改变电压,一段时间后时钟发生器将切换到高的工作频率。提高电压所需的时间可以通过不同的途径决定,例如可以由片上计时器(VDD_OK)决定,也可根据系统的功能要求或电源管理单元的状态标记做出决定。但有一点需要注意,对于以最高频率工作的固定电压系统来说,动态电压调节功能不会为系统带来任何功耗的节省。  



      图1:动态电压调节硬件系统

      AVS技术与开环DVS技术不同,AVS技术设有反馈电路,让片上硬件性能监控电路(HPM)可以为自适应电压调节系统提供反馈信号。由于硬件性能监控电路设于微控制器之内,所采用的工艺技术与微控制器所用的完全相同,而且工作时处于与系统相同的温度环境内,因此允许将电源电压调节到器件能够接受的实际极限。根据最接近系统真正需要的频率调节供电电压,而非为假设的最坏情况提供供电。  

      图2 显示AVS实现的框图。整个电路系统由以下4个功能模块组成:硬件性能监控电路、先进电源控制器(APC)、PowerWise接口(PWI)及电源管理单元(PMU)。PWI接口由ARM公司及美国国家半导体合作开发,可为内置的先进电源控制器提供一个标准的双线控制接口,以便控制外接的PMU。由这几个功能模块组成的自适应电压调节系统可以为工作在任何频率、温度或者硅工艺的器件提供最小的电源电压。  



      图2:自适应电压调节硬件系统

      APC利用来自硬件性能监控电路的输入信号来确定是否存在任何的电源电压优化方法。APC通过PWI将电压调节指令传送至PMU,而PMU便按照请求提供所需的供电电压。HPM不断监控工作在最新调节电压下的芯片。如果能采用进一步的优化措施,APC会发出最新的电压调节指令。电源必须按照APC的命令适时地调节其供电电压,以便AVS控制系统的反馈环路能够稳定。  



      图3:自适应电压调节功能降低了功耗

      无论嵌入式计算系统以哪一频率(包括最高频率)工作,AVS技术都能获得近乎最佳的工作功率。最大工作频率下微控制器的电源电压规范能确保系统在即使采用最差的硅工艺技术情况下,芯片也可在最高工作温度环境下正常工作。但一般来说真正的工作温度都比规定的最高温度低,而芯片的工艺技术一般都比最坏的情况好。在这样的情况下,即使以最高频率工作,仍有足够空间将电压进一步调低。开环动态电压调节技术则不具有这个特点,但AVS技术则可利用片上HPM的反馈来发现这种额外的性能,即使是在最高的工作频率下,APC也能控制PMU将工作电压调低。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top