微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 未来手机RF前端设计挑战

未来手机RF前端设计挑战

时间:04-21 来源:互联网 点击:

 在过去十年中,手机经历了巨大的变革。面世伊始仅供人们通话和收发短信的手机,现在已经转变为多功能手持设备,融电话、Web浏览器、短信工具、照相机、游戏机、MP3播放器和很多实用功能于一体,能够满足人们的移动信息需求。

  此外,当前的手机用户不仅需要这些功能,而且还要求能够随时随地使用这些功能。这种移动技术需要兼容多个频段和多种调制标准。由于功能复杂,且消费者喜爱小巧机型,设计人员因此面临强大压力,必须以更低的物料清单(BOM)成本和创记录的交付时间来提供产品,才能满足市场对于产品不断推陈出新的期望。

  如此严格的要求促使设计人员改变了对RF前端的评估测试方式。本文将讨论上述需求对于设计的影响,以及如何利用新方法来增强多功能手机的用户体验。

  已涉足此行业数年的设计工程师可能还记得,几年前,语音是决定产品性能的关键因素,最常使用的调制格式是GSM/GPRS,手机的外形较大,RF前端部分所占用的印刷电路板(PCB)面积也较多,性能是关注的焦点。

 \ 
天线位于手机外部

  天线位于手机外部(如图1所示),采用短截线天线或能够拉出收回的滑动型天线,其效率远优于当前手机中的天线。这类手机仅支持纯语音呼叫,用户要将手机拿至贴近头部的位置。因此,天线的设计是在相对了解的环境中进行的,能够实现设计的优化。

  直至今天,这依然很重要,因为功率放大器(PA)对于通话时间影响很大,而这直接关系到使用某种型号或某个品牌手机时的用户体验。如果设计人员能够优化手机在实际使用环境中的电流消耗,那么该产品在消费者市场中会占据更有力的竞争地位。天线及其实际性能间的一致性使得手机设计人员能够通过天线与PA的阻抗匹配灵活地优化设计,以便尽可能高效地提供最高功率。

  手机设计今非昔比

  时光荏苒,手机市场发生了巨变。现在的关注焦点是应用处理器和组件,专注于软件应用胜过提升用户体验。目前,手机外形更为小巧,但在很多情况下,为了实现这些独特外形,不得不在一定程度上牺牲性能。现在的手机采用的是贴片天线或平面倒F天线(PIFA)(参见图2),多数情况下它们的效率低于过去的天线。

\
现在的手机采用的是贴片天线或平面倒F天线

  不过,为了解决设计人员面临的难题,一些手机转而采用过去的短截线天线。这种性能与外形尺寸间的取舍,会直接影响电池寿命、通话时间和网络可用性方面的用户体验,因为天线选择及其使用环境会影响PA的工作。

  例如,电压驻波比(VSWR)就体现了这是如何影响PA的。当前的手机工作在三种基本配置下。一种是用户按传统方式将手机贴在头部附近通话,或者置于头部前方,使用扬声器通话,还有一种情况是手机并没有握在手里,而是与用户有一定的距离。

  天线的VSWR性能差别很大,这只是其中的三种主要场景,实际上,由于手指和手掌的位置不同,存在很多种使用状况,但为简单起见,本文仅讨论以上三种情况。有关天线VSWR性能的差别请参见图3。

\
天线的VSWR性能

  图3:手机中PIFA天线的VSWR性能。

  这些频率响应说明了在当前新一代手机中,PA面临的不同VSWR要求。对于这类手机,在频段边缘,PA对应的VSWR范围为5:1到2:1。VSWR性能还会影响接收灵敏度。许多手机设计人员涌来评估RF前端的通常做法是,在50欧姆实验室环境中测量性能。

  实际上,这种方法对于今天的设计已不再适用,因为PA所面对的阻抗是不可预测的。设计人员要优化解决方案,以为终端用户提供最佳通话时间,就必须着手在不同的VSWR条件下检测RF前端。

  诸如3GPP等标准委员会制定了空中测试(OTA)要求。一般来说,这些要求要比运营商的要宽松得多,因为后者需要更严格的OTA性能。运营商为其手机设置的典型值为传导RF输出功率-11dB。

  根据GSM850标准,这相当于22dBmOTA要求,因为传导输出功率要求设置为33dBm,而天线效率和传播效果随频率不同,会有-11dB的损耗。如果RF前端都按照这些要求进行评估和对比,这些OTA要求就能直接应用于50欧姆系统。
GSM功率控制架构对通话时间的影响

  当前行业中GSM手机采用最广泛的三种架构分别是电流控制、电压控制和功率检测。图4、图5和图6分别给出了这三种架构的简化框图。

 \ 
电流控制

  图4:电流控制模块图。

  图4中的电流控制架构是一种间接控制的方案,它监控电流并使其保持恒定。这种方法将电流与功率相关联,只要电流与功率之间的关系保持恒定(仅当负载电阻不变时),就能非常出色地控制功率。控制功率的方法是:通过调整放大器的基级偏压来控制增益,进而实现功率控制。

\
电流控制

  图5:电压控制模块图。

图5为电压控制示意图,它与电流控制类似,也是一种

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top