微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 模块化仪器应对宽带通信测试新挑战

模块化仪器应对宽带通信测试新挑战

时间:05-23 来源:互联网 点击:
Agilent PXI 模块化数字预失真仪器

与其他数字预失真方法不同,安捷伦的数字预失真方案从设计人员的角度出发,提供功能灵活的内置宽带建模工局,可连接至可配置的仪器(例如安捷伦模块化 PXI 系列)(图 5)。  



此设置中,任意波形发生器配有用于 LTE-A 和 802.11ac 的 SystemVue,可以提供测试元件所需的标准信号,运行安捷伦矢量信号分析(VSA)软件的 M9392A 捕获信号,以测量功率放大器的非线性。使用 SystemVue 以及 M9330A 和 M9392A 可以控制并实现整个数字预失真设计流程的自动化。

对运行中的模拟功率放大器应用数字预失真

图 6 显示的是记忆多项式数字预失真器的结构图。第一步是理解功率放大器行为背后的物理机制,并提取数字预失真系数。第二步是构建预失真器模型,以便在第一步的基础上精确捕获静态非线性和记忆效应。标记为“预失真器训练”的反馈路径(模块 A)输入为 (n)/G,输出为 zˆ(n),其中 G 是预期功率放大器小幅信号增益。实际预失真器是反馈路径的完全复制(A 的副本),输入和输出分别为 x(n) 和 z(n)。理想状况下,(n) = Gx(n),其中 z(n) = zˆ(n),误差项 e(n) = 0。根据 y(n) 和 z(n),该结构可以让我们直接找出模块 A 的参数,进而生成预失真器。算法在误差能量 ║e(n)║2 最低时收敛。  



使用 SystemVue W1716 DPD 功能表征真实的功率放大器硬件是一个简单直接的、只需几分钟的过程。测量设置和步骤如图 7 所示。注意,基于仿真的数字预失真提取方法也使用相同的流程。本应用指南中暂不讨论该方法。

数字预失真建模流程步骤

1. 通过 W1716 DPD 向导计算并将数字预失真激励波形(例如 LTE-Advanced、802.11ac 或定制波形)下载至 M9330A 任意波形发生器。基带任意波形发生器输出 I 和 Q 模拟电压,来驱动 Agilent N5182A MXG 信号源的基带输入。之后,MXG 输出一个调制的射频波形作为功率放大器的激励,激励信号带有之前设定的平坦度和校准。注意,大型基站功率放大器可能需外部前置放大器来驱动至 1 dB 压缩点。

2. 使用 M9392A 矢量信号分析仪捕获原始输入信号和功率放大器放大之后的信号,并通过 89600 VSA 软件传回 SystemVue。注意,功率放大器输出信号进入 M9392A 前可能需要衰减,以避免损环或造成分析仪过载,或降低其校准性能。

3. W1716 DPD 工具可以根据时间对应并比较捕获的输出波形与线性标度的输入波形,以获得代表被测件特性的 EVM 历史记录。根据上述差异可以提取数字预失真模型,然后通过仿真进行验证。此时,您可以获得一个在断开测量仪器后仍可使用的“脏(dirty)功率放大器”模型。

4. 为了在硬件中进行验证,对原始激励信号进行预失真并再次下载到信号发生器上,以再次测试功率放大器。使用与步骤 2 相同的物理连接并捕获线性化后的DPD+功率放大器响应。

5. 分析并绘制捕获响应的图形。  



图8显示的是5步测量法数字预失真建模流程在商用功率放大器中的应用。与图5的示意图一致,运行 SystemVue 的笔记本电脑(图 8 上部)控制安捷伦 PXI 模块化仪器(图 8 下部),M9330A 任意波形发生器与 M9392A 集成于同一个机箱。外部 N5182 MXG 射频信号源(图 8 中部)将 M9330A 任意波形发生器输出的基带信号上变频为调制载波。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top