危险品仓库的复合无线传感器节点设计
时间:03-24
来源:互联网
点击:
电路采用电池供电方式,电源电路如图6所示。其中的低压差线性调压器(LDO)选用LM1117芯片,该芯片可提供4个固定电压输出(1.8 V、2.5 V、2.85 V、3.3 V),具有电流限制和热保护功能。电池提供的5~9 V电压经过LDO降压后电压稳定输出3.3 V供应给整个系统使用,D1用来指示电源供电情况。
2 复合传感器节点软件设计
2.1 复合传感器节点操作系统的选择
本课题选用TinyOS操作系统,其程序采用模块化设计,所以它的程序核心往往都很小(一般来说核心代码和数据大概在400字节左右),能够突破传感器存储资源少的限制,这能够让TinyOS很有效地运行在无线传感器网络上并去执行相应的管理工作等。TinyOS本身提供了一系列的组件,可以很方便地编制程序,用来获取和处理传感器的数据并通过无线网络来传输信息。
2.2 复合传感器驱动程序设计
复合传感器驱动程序由3部分组成:传感器接口定义文件、传感器接口配置文件、传感器接口实现文件,如表1所列。
传感器接口定义文件声明了传感器与外界的接口。提供的命令函数和事件函数包括read()命令函数和readDone()事件函数,如表1中所述。其中命令函数由接口提供者实现,事件函数由调用接口者实现。传感器接口配置文件定义了要实现SHT接口需要哪些组件。传感器接口实现文件具体实现SHT接口和传感器驱动。
2.3 复合传感器节点数据通信设计
复合传感器节点数据通信协议为分发式、收集式。其中分发式用来传递指令和参数给所有传感器节点;收集式用来收集所有传感器节点采集到的数据。因此定义了如图7所示的结构体来存储需要分发的指令和收集的数据。这些数据只能通过相应的接口才能获取,从而保证了数据的安全性。
2.3.1 分发式
汇聚节点将新定义好的控制指令和参数装入数据包后,分发组件调用Send接口将该包发送至各个节点。节点收到包后,会做出相应的调整并反馈当前状态信息给应用程序。分发式网络协议工作原理如图8所示。
分发式协议中用到的组件包括:DisseminationC(分发协议的控制部分)、DisseminatorC(分发协议进行数据分发和接收的部分)、BcastSenderC(向网络中广播数据)。分发式协议中用到的接口包括:StdControl(对分发协议进行控制)、DisseminationUpdate(将上层传来的命令进行分发)、Send(广播)。
2.3.2 收集式
汇聚节点需要收集各节点采集到的数据时调用收集式协议,应用程序通过AMSend接口将收集消息传给AMRadio组件,当AM Radio组件经Receive接口收到数据包后由Packet接口打开并取出相关值由应用程序处理。收集式网络协议工作原理如图9所示。
收集式协议中用到的组件包括:CollectionC(CTP协议)、PoolC(数据缓冲池)、QueueC(数据缓冲队列),收集式协议中用到的接口包括:Packet(对Packet进行操作)、Receive(接收数据)、AMSend(发送数据)。
2.4 复合传感器节点工作流程
第一个启动的节点为汇聚节点,该节点负责建立网络,其他分节点申请加入网络,加入网络成功后,分节点就会将自身采集数据传送到汇聚节点。汇聚节点也可发送指令到各个分节点来完成数据重传、获取节点状态、更改采集周期等任务。系统的工作流程如图10所示。
3 复合传感器节点测试
3.1 复合传感器节点功耗测试
复合传感器节点采用TinyOS2操作系统,具有电源管理能力。在关闭电源管理的情况下,传感器功耗平均每秒11.92 mA;在开启电源管理的情况下,传感器功耗每秒1.04 mA,功耗相差10倍,可见系统在开启电源管理的情况下使用时间可延长近10倍。
3.2 复合传感器节点网络性能测试
3.2.1 节点通信距离测试
节点通信距离测试情况如表2所列。
3.2.2 节点组网测试
测试汇聚节点能否正常的启动网络,各分节点能否正常加入网络,并将自己的网络ID传送至汇聚节点。测试选用一个汇聚节点,10个分节点。
测试结果:分节点平均接入时间1 s,最长接入时间2 s,节点组网正常。
3.2.3 节点数据传输测试
测试汇聚节点和各分节点间的数据通信,包括汇聚节点向各分节点发送各种控制命令,以及汇聚各分节点采集数据。
测试结果:汇聚节点和各分节点问的数据通信正常。
3.3 复合传感器节点现场测试
本试验中使用了5个采集节点和1个汇聚节点,每个采集节点上安装有4个传感器,分别是温湿度传感器、光敏传感器和CO2传感器。节点布设于面积为100 m2左右的仓库内,节点成多边形布设,节点间距离为25 m左右。
测试结果如表3所列。复合传感器节点可在无人值守的情况下实时、准确地获取易燃、易爆危险品仓库中的安全信息,测量值精确度在0.3%和5%之间,能够满足易燃、易爆危险品各项安全信息的监控要求。
传感器 收发器 电流 电路 电容 射频 MCU ADC 振荡器 电感 LDO 电压 电源管理 相关文章:
- 传感器技术中的阻抗测量方法(03-23)
- 电桥测量基础(06-10)
- 适用于微型仪器的精密电容传感器接口(09-06)
- 基于PIR的移动检测系统的实现(11-03)
- 基于霍尔传感器的直流电机转速测量系统设计(11-14)
- NPXI智能传感器的TPMS系统设计(11-29)
鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...
栏目分类