微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 印刷电路板的映像平面与EMC

印刷电路板的映像平面与EMC

时间:02-26 来源:互联网 点击:

将射频回传电流的路径尽量和讯号走线靠近。最佳的设计方法是:在接近讯号走线的附近,使用一个射频回传平面,它们之间的距离在可实现的能力范围之内,应该尽量的校

  部份电感永远存在于导线中,它如同默认值一样。因此,它就等同于一个具有特定的谐振频率的天线。「共同的部份电感」可以降低「部份电感」的效应。缩小两导线的间距,其个别的部份电感就可以降低,这可以符合EMI兼容标准的要求。

  为了使共同的部份电感之效应达到最大,在两导线中的电流必须大小相同,但方向相反。这也是为何映像平面(或接地线)能够如此有效的原因。在两条平行的导线之间,有共同的部份电感存在,而这些电感值会随着两导线的间距和长度之不同而变化(可以参考导线的技术规格)。当两平行导线的间距和长度都最小时,它们的共同的部份电感值会最大。

  若在电源和接地平面之间以介电材料分开,此时「共同的部份电感」将扮演什么角色呢?同样的,只要这两个平面的间距很小,共同的部份电感值就会很大。此时,在电源平面上所测量到的射频讯号电流应该为零,

因为它被大小相同、方向相反的射频回传电流抵销了。

  此外,须注意的是,如果降低两导线之间的共同的部份电感值,不仅会减损映像平面的效应,而且会使两平面之间的电容值增加。

  映像平面的设计

附图四是在PCB内的映像平面,它具有共同的部份电感。在此图中,讯号走线的大多数射频电流将回至接地平面,此平面在讯号走线的正下方。在这个回传「映像」结构中,射频回传电流将遇到一个有限大的阻抗(电感)。此回传电流会产生一个「电压梯度(斜率)」(每单位路径长度的电压变化率),也称为「接地噪声电压(ground-noise voltage)」。接地噪声电压会导致部份的讯号电流通过接地平面的离散电容。

  典型的共模电流 是差模电流Idm的1/10n倍(n为小于10的正整数)。不过,共模电流(I1和Icm)会比差模电流( 和 )产生更多的辐射。这是因为共模的射频电流场是相加的,而差模电流场是相减的。

  为了降低「接地噪声电压」,必须增加走线和其最靠近的映像平面之间的共同的部份电感值。这样可以为回传电流提供一条增强的路径,将映像电流映射回电流源。接地噪声电压Vgnd的计算公式如下所示:

  Vgnd = Lg dI2/dt - Mgs dI1/dt

  附图四和上式的符号意义如下所示:

  Ls = 讯号走线自身的部份电感。

  Msg = 讯号走线和接地平面之间的共同的部份电感。

  Lg = 接地平面自身的部份电感。

  Mgs = 接地平面和讯号走线之间的共同的部份电感。

  Cstray = 接地平面的离散(stray)电容。

  Vgnd = 接地平面噪声电压。

  为了降低附图四中的If,接地噪声电压必须减少。最好的方法是:缩小讯号走线和接地平面之间的距离。在大多数的情况下,接地噪声的降低是有极限的,因为讯号平面和映像平面之间的距离不能小于一个特定值;若低于此值,则电路板的固定阻抗和功能将无法确保。此外,也可以为射频电流提供额外的路径,藉此降低接地噪声电压。此额外的回传路径包含有数条接地线。

  PCB接地层图

\
图四:PCB内的接地平面

  一个稳固的平面会产生共模的辐射。由于共同的部份电感可以降低具辐射性的射频电流的产生,因此,共同的部份电感也会影响到差模电流和共模电流。而利用映像平面是可以将这些电流大幅地降低的。理论上,差模电流应该等于零,但实际上它无法100%被消除,而剩下来的差模电流会转变成共模电流。此共模电流正是造成电磁干扰的主要来源。因为在回传路径上的剩余的射频电流,被加到在讯号路径中的主电流(I1)中,造成讯号严重干扰。为了降低共模电流,我们必须将走线平面和映像平面之间的共同的部份电感值增加至最大,以补捉磁通量,藉此消除不需要的射频能量。差模电压和电流会产生共模电流,而减少差模电流的方法除了增加共同的部份电感值以外,走线平面和映像平面之间的距离也必须最小。

   在PCB内,当有一个射频回传平面或路径存在时,若此回传路径被连接至一个参考源,则可以获得最佳的性能。对TTL和CMOS而言,其芯片内的功率和接地脚位是连接至参考源、电源、接地平面。只有当射频回传路径有和芯片内的功率和接地脚位连接,一个真正的映像平面才会存在。通常,在芯片内会有接地线路,此线路与PCB的接地平面连接,因此产生良好的映像平面。如果将此映像平面移除,则在走线和接地平面之间会产生「虚幻的」映像平面。由于走线之间的距离很小,辐射能量会降低,因此,射频映像(RF image)会被抵销。理想的映像平面应该是无限大的,而且没有分裂、细缝或割痕。

接地和讯号回路

由于回路是射频

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top