微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > RFI整流原理和预防

RFI整流原理和预防

时间:02-26 来源:互联网 点击:

\

  图4:仪表放大器通用共模/差模RC EMI/RFI滤波器
注意,在滤波器中,共模(R1-C1和R2-C2)和差模(DM)信号(R1+R2,以及C3 "| 串联的C1-C2)均受到完全平衡的滤波。如果R1-R2和C1-C2匹配不佳,VIN的部分输入共模信号就会转换为仪表放大器输入端的差模信号。因此,C1和C2相互间至少有5%匹配。R1和R2应为1%金属薄膜电阻,以利于匹配。假定从VIN端获得的源阻抗相对R1-R2较低,且能够匹配。在这种滤波器中,所选的C3应远大于C1或C2(C3≥C1、C2),以便抑制由于R1-C1和R2-C2时间常数不匹配引起共模(CM)-差模(DM)转换,从而导致的杂散差分信号。
整体滤波器带宽应至少为输入信号带宽的100倍。实际上,滤波器元件应对称安装在具有大面积接地层的PC电路板上,而且必须靠近仪表放大器输入端,以便实现最佳性能。
图5所示为该滤波器系列,适合各种不同的仪表放大器。RC元件应按照表中要求,根据不同的仪表放大器量身定制。选择这些滤波器元件是为了使低EMI/RFI灵敏度和低噪声增加量达到适度平衡(与无滤波器的相关仪表放大器相比)。

\

  图5:适用于AD620系列、AD623、AD627和其它仪表放大器的灵活共模和差模RC EMI/RFI滤波器
为了测试配置的EMI/RFI灵敏度,可以向输入电阻施加1 Vp-p的共模信号,如图所示。采用常用的仪表放大器(如AD620),在增益为1000的条件下工作时,获得的最大RTI输入失调电压偏移在20 MHz范围内为1.5μV。在AD620滤波器示例中,差分带宽约为400 Hz。
共模扼流圈提供简单的单器件EMI/RFI保护,可以替代无源RC滤波器,如图6所示。

\

  图6:为简明起见,以及实现最低噪声EMI/RFI滤波操作,共模扼流圈适用于AD620系列仪表放大器
除了采用的元件数量较少以外,通过电阻的消除作用,基于扼流圈的滤波器还具有低噪声。但是,选择合适的共模扼流圈至关重要。图6所示电路中采用的扼流圈是Pulse Engineering B4001。从DC至20 MHz(G = 1000)测得的最大RTI失调偏移为4.5μV。可以采用现成的扼流圈(如B4001),也可以另行制造。绕组的平衡非常重要,因此,建议采用双线绕组。当然,磁芯材料必须能够在预期频带内工作。注意,和图5中的RC滤波器系列不同,只采用扼流圈的滤波器无法提供差分滤波。通过增加图5所示的R1-C3-R2连接,可以在扼流圈后采用第二级设置选择增加差模滤波。
放大器输出和EMI/RFI
除了对输入和电源引脚进行滤波外,还需要防止放大器输出受到EMI/RFI的影响,在需要驱动用作天线的较长电缆时尤其必须注意。从输出线路收到的RF信号可以耦合回其受到整流的放大器输入端,并以失调偏移的形式再次出现在输出端。
电阻和/或铁氧体磁珠(或两者)与输出串联后,即构成最简单廉价的输出滤波器,如图7(上方电路)所示。
增加图7所示的电阻-电容-电阻"T"型电路(下方电路)后,可以改进该滤波器,只会略微变得复杂一些。输出电阻和电容会使大部分高频能量移出放大器,使该配置即使在低功耗有源器件中也同样适用。当然,必须仔细选择滤波器元件的时间常数,将所需输出信号下降程度降至最低。
本例中,所选的RC元件约为3 MHz信号带宽,适用于仪器仪表或其他低带宽级应用。

  图7:应防止运算放大器和仪表放大器输出受到EMI/RFI的影响,尤其在驱动长电缆的情况下

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top