基于双DSP的电力系统谐波分析仪的设计
时间:12-23
来源:互联网
点击:
系统软件设计
系统上电后按照选定的模式自举加载程序,跳转到主程序入口,进行相关变量、数据乒乓缓冲区、命令区、控制寄存器初始化,并使能 XINTF和A/D定时采样中断。定时中断产生后,DSP-L机内部A/D开始对6组传感器信号进行采样,并将转换结果存到乒乓缓冲区,然后通过中断交互式协调工作模式将结果传送至DSP-R机,DSP-R机调用FFT程序对这些数据进行处理将结果实时传到LCD显示。主要包括3部分内容:数据处理算法、键盘中断子程序,显示处理子程序。系统双机工作流程图如图5所示。
图5 系统双机工作流程图
1 数据处理算法
本系统主要用到以下算法:①低通滤波处理算法;②捕获单元高精度测频算法;③自适应调整采样间隔技术;④FFT算法的谐波分析。具体算法及代码请参阅《今日电子》网站本文章完整版。
2 键盘中断子程序
为满足系统实时性要求,完成键盘操作的实时响应,本系统采用外部中断方式对键盘扫描,完成命令形成与标志位设置功能。键盘中断子程序流程图如图6所示。
3 LCD显示子程序
LCD的显示分为信息区与显示区两部分。其中信息区包括固定信息(显示烟台大学DSP实验室等),显示区包括各相频率值与谐波波形的显示。
实验结果
本系统采样频率为fs=6400Hz,捕获单元测频结果和FFT算法得到各次谐波的幅值分别如表1和表2所示。
误差分析
经过分析以上各参数可看出:当频率是50Hz左右时,最大误差不超过0.01Hz,谐波分析的19次谐波呈波次越高幅度越小的趋势,并且所得各次谐波幅度比较符合实际情况。由于本系统采用了自适应调整采样间隔技术来实现同步采样,所以保证了参数的测量精度。
结束语
本文介绍了一种电力系统谐波分析仪,采用了DSP+DRAM+DSP的双处理器协同工作结构,通过双机中断交互式协调工作的模式快速的进行双机通信,可满足高速数据采集与传输的要求。由于采用了同步采样技术、自适应调整采样间隔技术和补零防频谱泄露技术,可以实现较为准确的谐波分析,便于工程应用,具有较大的实际应用价值。
作者:烟台大学光电信息学院 王军东 刘昌伟 马金臣
系统上电后按照选定的模式自举加载程序,跳转到主程序入口,进行相关变量、数据乒乓缓冲区、命令区、控制寄存器初始化,并使能 XINTF和A/D定时采样中断。定时中断产生后,DSP-L机内部A/D开始对6组传感器信号进行采样,并将转换结果存到乒乓缓冲区,然后通过中断交互式协调工作模式将结果传送至DSP-R机,DSP-R机调用FFT程序对这些数据进行处理将结果实时传到LCD显示。主要包括3部分内容:数据处理算法、键盘中断子程序,显示处理子程序。系统双机工作流程图如图5所示。
图5 系统双机工作流程图
1 数据处理算法
本系统主要用到以下算法:①低通滤波处理算法;②捕获单元高精度测频算法;③自适应调整采样间隔技术;④FFT算法的谐波分析。具体算法及代码请参阅《今日电子》网站本文章完整版。
2 键盘中断子程序
为满足系统实时性要求,完成键盘操作的实时响应,本系统采用外部中断方式对键盘扫描,完成命令形成与标志位设置功能。键盘中断子程序流程图如图6所示。
3 LCD显示子程序
LCD的显示分为信息区与显示区两部分。其中信息区包括固定信息(显示烟台大学DSP实验室等),显示区包括各相频率值与谐波波形的显示。
实验结果
本系统采样频率为fs=6400Hz,捕获单元测频结果和FFT算法得到各次谐波的幅值分别如表1和表2所示。
误差分析
经过分析以上各参数可看出:当频率是50Hz左右时,最大误差不超过0.01Hz,谐波分析的19次谐波呈波次越高幅度越小的趋势,并且所得各次谐波幅度比较符合实际情况。由于本系统采用了自适应调整采样间隔技术来实现同步采样,所以保证了参数的测量精度。
结束语
本文介绍了一种电力系统谐波分析仪,采用了DSP+DRAM+DSP的双处理器协同工作结构,通过双机中断交互式协调工作的模式快速的进行双机通信,可满足高速数据采集与传输的要求。由于采用了同步采样技术、自适应调整采样间隔技术和补零防频谱泄露技术,可以实现较为准确的谐波分析,便于工程应用,具有较大的实际应用价值。
作者:烟台大学光电信息学院 王军东 刘昌伟 马金臣
电压 电流 DSP 传感器 滤波器 电路 ADC 总线 放大器 低通滤波器 电容 电路图 IDT LCD 显示器 电子 相关文章:
- 精确测量功率MOSFET的导通电阻(11-16)
- 串联电池组电压检测电路的精度研究(03-19)
- 用于可靠工业测量的隔离技术(05-07)
- 超导磁体失超检测中电压隔离校正电路的设计(07-28)
- 瞬态电压抑制二极管的选用原则(08-13)
- 基于示波器的电源纹波的测试分析(11-21)