LDMOS结构特点和使用优势
着效率以及功率密度持续不断地提升。过去四年来,飞利浦第二代 0.8 微米 LDMOS 技术在 GSM、EDGE 与 CDMA 系统上拥有耀眼的效能与稳定的批量生产能力,现阶段为了满足多载波功率放大器 (MCPA) 与 W-CDMA 标准的需求,还提供了更新的 LDMOS 技术。
飞利浦第三代 0.8 微米超低失真 LDMOS 技术采用非统一参杂 (doping) 方式,称之为分散 Vt 概念,与传统的 LDMOS 比较,补偿线性提升了 5 到 8dB,使得这项技术特别适合应用于 3G 基站内的 MCPA 驱动器,同时比上一代 LDMOS 产品的功率增益要高 2 dB。
飞利浦第四代 LDMOS 技术将效能进一步提升,这种新型的 0.6 微米工艺提升了 50% 的功率密度以及 6 % 到 8 % 的 W-CDMA 效率,功率增益则也比先前的 0.8 微米技术提高了 2 dB。
飞利浦的第五代 LDMOS 技术将效能提升到全新的境界,它为 W-CDMA 放大器效率奠定了新标准,同时提供所有移动电话标准的主要优势,例如 0.4 微米工艺技术为 W-CDMA 带来超过 30% 的效率,并为 PCS/DCS 带来 17dB 的增益,此外,低记忆效应也可以使用最新的数字预失真 (DPD, Pre-Distortion) 系统,高线性度则可以改善多载波功率放大器。我们的第五代技术同时也将热阻抗由第四代的 0.76 降低到 0.5 K/W,这将可以提升可靠度、缩小基站的尺寸并节省功率与冷却成本,第五代的 LDMOS 比第四代高了 20% 的功率密度,让我们能够推出在单端式封装上达 150W CW 运作的器件。
我们的第五代
LDMOS 采用专利的四层金属堆栈来进一步提升可靠度与平均无故障时间 (MTTF),而宽厚的 AlCu 金属化方式也比传统的 LDMOS 在相同 MTTF 下高了 25°C 的接点温度运作,如果使用于 160°C 的标准晶体管接点温度上,这项技术比传统 W-CDMA 运作应用的 LDMOS 可靠度高上四倍,MTTF 将超过 1000 年。
我们的 0.14 微米工艺能力可将技术更进一步优化,将 LDMOS 效能带到 LDMOS 效率的理论极限,在此之后,新的器件架构将着重于如何让 LDMOS 为新型态晶体管运作优化,并强化如 Doherty 等概念。
运作面:
绝佳的稳定性,由于负汲极电流温度常数,所以不受热散失的影响
比双载子更能忍受较高的负载未匹配现象 (VSWR),提高现场实际应用的可靠度
卓越的射频稳定度,在闸极与汲极间内置隔离层,可以降低回授电容
在平均无故障时间 (MTTF) 上有相当好的可靠度
LDMOS 的优势
技术面:
卓越的效率,可降低功率消耗与冷却成本
卓越的线性度,可将信号预校正需求降到最低
优化超低热阻抗,可缩减放大器尺寸与冷却需求并改善可靠度
卓越的尖峰功率能力,可带来最少数据错误率的高 3G 数据率
高功率密度,使用较少的晶体管封装
超低感抗、回授电容与串流闸阻抗,目前可让 LDMOS 晶体管在双载子器件上提供 7 bB 的增益改善
直接源极接地,提升功率增益并免除 BeO 或 AIN 隔离物质的需求
在 GHz 频率下拥有高功率增益,带来更少设计步骤、更简易更具成本效益的设计 (采用低成本、低功率驱动晶体管)。
- 基于LDMOS的TD-SCDMA射频功放设计(03-25)
- 一种适用于射频集成电路的抗击穿LDMOS设计(01-19)
- 线性稳压器的工作原理和应用(07-16)
- 40W晶体管Hi-Fi功率放大器设计(08-04)
- LNA的设计与仿真原理(08-16)
- 提高微波功率晶体管可靠性(09-15)