新型3G系统超宽带室内双向天线设计
越窄。因此需根据天线增益和辐射宽度对环片内外半径进行折中选择。
其次是激励金属小球尺寸的设计。金属小球与馈电同轴延长出来的内导体柱连接,由于馈电是由小球的辐射实现的,因此不存在平衡不平衡的问题。同时,对小金属球体进行优化,优化参数量小直观,容易实现天线的匹配。通过对小球尺寸的参数建模和仿真,可以得到小球半径R0对天线驻波的影响,如图4所示。
可见小球半径对低频段驻波影响比较明显,同时,仿真还发现小球半径对天线辐射方向宽度影响不大。
3 天线优化及测试结果
根据上一节的参数计算结果,选取天线主要结构参数为R1=55,R2=60,R0=25,然后采用Ansoft公司的高频仿真软件(HFSS)[8],对图 2中主要参数进行优化计算,优化后的天线结构为:圆环R1=58mm,R2=75.5mm,t0=2mm;金属球锥R0=23mm,锥角 θ=41.2°,a=2mm,d=100mm。主平面远场辐射方向图如图5~图8所示。
按照优化尺寸加工天线模型,并设计了天线罩,天线罩采用2 mm厚的玻璃钢材料,经测试对天线驻波和辐射特性影响不大。
使用安捷伦公司的矢量网络分析仪对其驻波性能进行测试,指标如图9所示。实测驻波比与天线仿真阻抗特性吻合较好,从800MHz~2500MHz,电压驻波比VSWR<1.5时的带宽达到了100%,实现了天线的超宽带特性。
天线增益与方向特性的实测结果与仿真结果对比情况如表1所示。
从测试的结果来看,与优化仿真数据吻合较好,特别是天线远场辐射方向图与仿真结果非常接近,达到了最初的设计目标。
本文针对目前3G移动通信室内分布系统中存在的问题,即在部分商务写字楼和宾馆酒店的走廊安装全向天线不能满足两侧纵深区域通信覆盖要求的问题。从环形天线的基本理论出发,讨论了其实现宽带辐射和平衡匹配馈电的方法,提出了一种新型的环形天线结构,从仿真和实测的结果来看,实现了设计目标,天线具有很好的双向辐射和超宽带特性,从而可以大大降低3G室内通信系统建设成本,有助于提高整个网络的质量和容量。
- 4G关键技术及挑战(10-11)
- 什么是超宽带(UWB)技术(02-24)
- 超宽带通信中的天线技术(10-23)
- 支持3G应用的超宽带双极化智能天线设计(08-12)
- 分齿蝶形超宽带天线的设计(09-28)
- 基于噪声消除技术的CMOS超宽带LNA设计(02-01)