利用半导体实现医生与病人间的信息化管理
时间:01-14
来源:互联网
点击:
3 无线连接
无线通信技术可以让便携式传感和处理设备变得对病人和护理人员更加有效。它还使设备能够无缝地向其它网络传输数据,如医院以太网、CAN系统或互联网,以实现全球接入。在图1中,飞思卡尔的低功耗2.4GHz ISM频段MC1319x收发器系列为短程数据链路和网络提供了一个经济高效的解决方案。通过4线串行外围设备接口(SPI)连接,用户能够与各种微控制器进行直接通信。软件和处理器可以扩展,以适应各种应用,从简单的点到点系统一直到完整的ZigBee联网。
要进行简单的专有无线连接,只需要一个物理层(PHY)以及适用于点对点和STAR网络应用的简单媒体访问控制器软件(SMAC)。简单无线连接的内存要求不足2.5Kb,对于功率要求极低的应用而言,它是非常经济高效的,这些应用包括便携式的一次性医疗监控设备等。
2003年,IEEE发布了基于802.15.4标准的简单分组数据协议,适用于轻量级无线网络。这个强大的通信协议包括了802.15.4PHY和媒体访问控制器(MAC)。对那些需要长电池寿命,需要为控制器、传感器和远程监控提供可选延迟的应用而言,802.15.4的使用效果非常好。802.15.4为简单无线连接提供了更高的安全性,能够在网状和集群树网络应用中使用。
IEEE802.15.4协议标准的功能还为完全符合ZigBee标准的嵌入式平台奠定了基础。ZigBee堆栈包括网络和安全层、应用框架、应用配置文件(可以加载到符合802.15.4标准的收发器上)。图3对简单无线连接、符合802.15.4标准的解决方案、ZigBee平台这三者进行了比较,包括它们对微控制器存储器的要求(使用飞思卡尔的S08内核)和无线收发器示例(MC1319x系列设备)。
ZigBee拥有几项极具吸引力的功能,使它成为医疗监控应用的最有竞争力的候选方案。很多应用只是定时运行,或者只运行较短的时间。为了把功耗降到最小限度,极大地延长电池的使用寿命,ZigBee和蓝牙可以进入休眠模式,只在必要时才唤醒和通信,以延长电池的使用寿命。Wi-Fi不能在休眠-唤醒-休眠模式下高效运行,所以它必须始终开启,这一点使得它不适合于很多应用。
ZigBee和蓝牙都可以在很短的工作周期中运行(1%的工作周期意味着应用只在1%的时间内是运行的),但延迟却是ZigBee的一大优势。蓝牙设备可能需要几秒钟唤醒、与网络进行同步并开始通信。相反,ZigBee不需要在通信前同步,从而将从唤醒至通信的延迟缩短到27毫秒。这样可以实现更精确的排程,在每个唤醒周期内延长电池寿命。
ZigBee还可以通过增加存储器或适当的软件,从简单的点到点应用扩展到大型网状网络环境。
4 通信的延伸
医院和其它医疗设施更多地依赖于网络通信来移动大量数据,使其它需要数据的人能够更加轻松地访问。控制器区域网络(CAN)最初是为汽车应用开发的,可以连接一系列需要依赖共享信息的仪器和监控器。CAN可以连接到以太网骨干,进行整个医疗机构范围的数据传输。但是,医院使用的大多数设备都是便携式的,通常都固定在手推车上。通过短途无线通信,可以实现与大楼骨干网络的永久连接,即使推车不断从一个房间推到另一个房间。
同样,家庭医疗监控设备也可以通过Wi-Fi接入点或家庭联网网关的电缆或DSL连接到互联网。一旦与互联网连接,病人的关键监控信息都可以通过专用网站访问,专用网站还可以为医疗人员提供对病人医疗记录的快速访问。医院只需管理来自多个来源的信息流,从而对信息进行有效的分析,实现医生与病人之间的更快、更准确的响应。
5 医疗监控网关
当今的医疗人员获取病人信息的渠道比过去任何时候都要多,然而,如果在紧急情况下未对数据进行互连、分析、记录和响应,就不能实施信息的多样性。新兴的关键应用之一由医疗监控网关组成,这些网关允许医疗人员从本地和中央基站监控和连接设备。来自不同医院房间的设备如防毒面具、心脏监控器和药剂控制器等都可以从中央基站进行安全地远程监控。床头与医疗有关的设备可以通过以太网连接到基于微处理器的本地医疗监控网关,如果是与传统医疗有关的设备,则通过串行RS-232端口连接到监控网关。在正常情况下,每个方面的网关都与中央路由器有电线连接,它又与中央基站连接。
医疗网关中使用的微处理器必须提供连接和安全性,延长产品寿命。为该应用专门设计的最新一代的微处理器提供了多种连接选项,如多个10/100快速以太网控制器、USB和排队串行外围设备接口。最新一代微处理器有助于在整个安全以太网网络中提供安全的点到点通信,而不会给系统性能带来影响。对于从床头设备接收的数据,微处理器会对其进行加密,然后再由以太网将其发送到中央基站前。在中央基站对数据进行解密和解析。
无线通信技术可以让便携式传感和处理设备变得对病人和护理人员更加有效。它还使设备能够无缝地向其它网络传输数据,如医院以太网、CAN系统或互联网,以实现全球接入。在图1中,飞思卡尔的低功耗2.4GHz ISM频段MC1319x收发器系列为短程数据链路和网络提供了一个经济高效的解决方案。通过4线串行外围设备接口(SPI)连接,用户能够与各种微控制器进行直接通信。软件和处理器可以扩展,以适应各种应用,从简单的点到点系统一直到完整的ZigBee联网。
要进行简单的专有无线连接,只需要一个物理层(PHY)以及适用于点对点和STAR网络应用的简单媒体访问控制器软件(SMAC)。简单无线连接的内存要求不足2.5Kb,对于功率要求极低的应用而言,它是非常经济高效的,这些应用包括便携式的一次性医疗监控设备等。
2003年,IEEE发布了基于802.15.4标准的简单分组数据协议,适用于轻量级无线网络。这个强大的通信协议包括了802.15.4PHY和媒体访问控制器(MAC)。对那些需要长电池寿命,需要为控制器、传感器和远程监控提供可选延迟的应用而言,802.15.4的使用效果非常好。802.15.4为简单无线连接提供了更高的安全性,能够在网状和集群树网络应用中使用。
IEEE802.15.4协议标准的功能还为完全符合ZigBee标准的嵌入式平台奠定了基础。ZigBee堆栈包括网络和安全层、应用框架、应用配置文件(可以加载到符合802.15.4标准的收发器上)。图3对简单无线连接、符合802.15.4标准的解决方案、ZigBee平台这三者进行了比较,包括它们对微控制器存储器的要求(使用飞思卡尔的S08内核)和无线收发器示例(MC1319x系列设备)。
![]() |
| 图3:比较适用于医疗监控应用的三个无线通信解决方案的需求,它们都使用飞思卡尔S08微控制器内核和MC1319x无线收发器 |
ZigBee拥有几项极具吸引力的功能,使它成为医疗监控应用的最有竞争力的候选方案。很多应用只是定时运行,或者只运行较短的时间。为了把功耗降到最小限度,极大地延长电池的使用寿命,ZigBee和蓝牙可以进入休眠模式,只在必要时才唤醒和通信,以延长电池的使用寿命。Wi-Fi不能在休眠-唤醒-休眠模式下高效运行,所以它必须始终开启,这一点使得它不适合于很多应用。
ZigBee和蓝牙都可以在很短的工作周期中运行(1%的工作周期意味着应用只在1%的时间内是运行的),但延迟却是ZigBee的一大优势。蓝牙设备可能需要几秒钟唤醒、与网络进行同步并开始通信。相反,ZigBee不需要在通信前同步,从而将从唤醒至通信的延迟缩短到27毫秒。这样可以实现更精确的排程,在每个唤醒周期内延长电池寿命。
ZigBee还可以通过增加存储器或适当的软件,从简单的点到点应用扩展到大型网状网络环境。
4 通信的延伸
医院和其它医疗设施更多地依赖于网络通信来移动大量数据,使其它需要数据的人能够更加轻松地访问。控制器区域网络(CAN)最初是为汽车应用开发的,可以连接一系列需要依赖共享信息的仪器和监控器。CAN可以连接到以太网骨干,进行整个医疗机构范围的数据传输。但是,医院使用的大多数设备都是便携式的,通常都固定在手推车上。通过短途无线通信,可以实现与大楼骨干网络的永久连接,即使推车不断从一个房间推到另一个房间。
同样,家庭医疗监控设备也可以通过Wi-Fi接入点或家庭联网网关的电缆或DSL连接到互联网。一旦与互联网连接,病人的关键监控信息都可以通过专用网站访问,专用网站还可以为医疗人员提供对病人医疗记录的快速访问。医院只需管理来自多个来源的信息流,从而对信息进行有效的分析,实现医生与病人之间的更快、更准确的响应。
5 医疗监控网关
当今的医疗人员获取病人信息的渠道比过去任何时候都要多,然而,如果在紧急情况下未对数据进行互连、分析、记录和响应,就不能实施信息的多样性。新兴的关键应用之一由医疗监控网关组成,这些网关允许医疗人员从本地和中央基站监控和连接设备。来自不同医院房间的设备如防毒面具、心脏监控器和药剂控制器等都可以从中央基站进行安全地远程监控。床头与医疗有关的设备可以通过以太网连接到基于微处理器的本地医疗监控网关,如果是与传统医疗有关的设备,则通过串行RS-232端口连接到监控网关。在正常情况下,每个方面的网关都与中央路由器有电线连接,它又与中央基站连接。
医疗网关中使用的微处理器必须提供连接和安全性,延长产品寿命。为该应用专门设计的最新一代的微处理器提供了多种连接选项,如多个10/100快速以太网控制器、USB和排队串行外围设备接口。最新一代微处理器有助于在整个安全以太网网络中提供安全的点到点通信,而不会给系统性能带来影响。对于从床头设备接收的数据,微处理器会对其进行加密,然后再由以太网将其发送到中央基站前。在中央基站对数据进行解密和解析。
半导体 收发器 传感器 ADC 嵌入式 ZigBee 飞思卡尔 射频 压力传感器 电压 电容 集成电路 电容器 总线 USB 蓝牙 相关文章:
- 铁电存储器工作原理和器件结构(05-22)
- 电子熔丝在计算机应用中的优势(06-08)
- 卓联 Marvell?联手展示网络同步Ethernet解决方案(01-07)
- 恩智浦半导体发布USB收发器(02-23)
- 安森美扩充电源计算产品系列 推出新双缘多相控制器(03-13)
- ST推出测试65nm多标准硬盘驱动器物理层IP模块(04-08)

