微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 电子线路CAD在高频电路分析

电子线路CAD在高频电路分析

时间:07-24 来源:电子发烧友 点击:

计中,基于电路性能、器件选择和电磁兼容等因素的考虑,通常是以网络散射分析(S参数)、信号完整性分析、电磁仿真分析、电路仿真分析等手段,来综合考量实际电路系统的工作性能。针对片式电感器件的"分布影响"问题,一个可行的解决方案是对电感器件进行结构性电磁仿真并精确提取相应的SPICE电路模型参数,作为电路设计的依据,以此有效减小电感器件在高频设计应用中的误差影响。国外(日本)主要元器件企业的片式电感产品技术参数大多包含有S参数,通常可用于精确的高频应用分析。

  电路应用

  在高频电路中比较常用的片式电感有光刻薄膜电感、片式绕线电感和叠层片式电感三种。由于内电极的结构特点有明显不同,即使参数规格相同情况下,其电路响应却不尽相同。实际电路应用中对电感器件的选择有一定规律和特点,在此可略作归纳如下:

  阻抗匹配:射频电路(RF)通常由高放(LNA)、本振(LO)、混频(MIX)、功放(PA)、滤波(BPF/LPF)等基本电路单元构成。在特性阻抗各不相同的单元电路之间,高频信号需要低损耗耦合传输,阻抗匹配成为必不可少。典型方案是利用电感与电容组合为"倒L"或"T"型匹配电路,对其中的片式电感,匹配性能的好坏很大程度是取决于电感量L的精确度,其次才是品质因素Q的高低。在工作频率较高时,往往使用光刻薄膜电感来确保高精度的L。其内电极集中于同一层面,磁场分布集中,能确保装贴后的器件参数变化不大。

  谐振放大:典型的高频放大电路通常采用谐振回路作为输出负载。对其增益和信噪比等主要性能参数来说,片式电感的品质因素Q成为关键。L的少许误差影响可由多种电路形式予以补偿和修正,因而多采用绕线片式电感和叠层片式电感,对工作频率下的Q值要求较高。而薄膜片式电感无论是价格还是性能在此都不适合。

  本地振荡:本振电路(LO)必须由含振荡回路的放大电路构成,通常是以VCO-PLL的形式向RF电路提供精确的参考频率,因此本振信号的质量直接影响着电路系统的关键性能。振荡回路中的电感必须具有极高的Q值和稳定度,以确保本振信号的纯净、稳定。由于石英晶体具有相对较宽的阻抗动态补偿,此时对片式电感的L精度要求并不是首要指标,因此叠层片式电感和绕线片式电感多被用于VCO电路。

  高频滤波:低通滤波(LPF)常见于高频电路的供电去耦回路,有效抑制高次谐波在供电回路的传导,额定电流和可靠性是首要关注参数;而带通滤波 (BPF)则多用于高频信号的耦合,或同时兼有阻抗匹配的作用。此时插入衰减要尽量小,L、Q是此时的重点参数。综合比较,叠层片式电感最适合这种应用。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top