微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 超宽带技术在未来无线通信中的应用

超宽带技术在未来无线通信中的应用

时间:08-03 来源:互联网 点击:
3 UWB-RT的应用  

随着UWB-RT商业化的开始应用,这项技术为支持高速应用和低速智能设备的短距离无线通信系统的部署提供了可能性。FCC定义的UWB天线系统,使用简单的调制和编码机制,在短距离内可达到的信息速率大于100Mb/s。UWB在信息速率和覆盖范围之间可以做一个折衷。  
大量的应用场景适合使用UWB,主要包括:高速无线个人网(HDR-WPAN);无线以太网接口链路(WEIL);智能天线区域网(1WAN);室外点对点网络(OPPN);传感器,定位和识别网络(SPIN)。前三种情况假定UWB设备网络部署在居民区或者办公区,主要传送用于娱乐的无线视频/音频和控制信号。第四种情况提供室外点对点连接,而第五种考虑工业和商业环境。  

(1) 高速无线个人网(HDR-WPAN)  
HDR-WPAN定义为:每个房间的活动设备个数为5~10,在1~10 m范围内,数据速率为100~500 Mb/s,主要基于点对点拓扑。使用现有的有线或者无线标准,通过中继与外部相连。  

(2) 无线以太网接口链路(WEIL)  
可以将HDR的概念扩展到更高的数据速率,如1 Gb/s,2.5 Gb/s。WEIL应该满足以下需求:从PC厂商方面,需要以太网线的替代品;从消费者角度看,在PC和LCD屏之间要求高质量的无线视频传输能力,可以传无线数字视频。  

(3) 智能天线区域网(IWAN)  
IWAN的特征是:在室内或者办公室等有高密度设备的地方,覆盖范围为30 m。设备的要求是:低成本、低功率消耗,如1~10 mW,给用户提供家庭/办公室的智能分布网。设备的功能有:准确定位、跟踪,支持环境敏感的设备,在当前的窄带短距离网络中不太容易实现。

(4) 室外点对点网络(OPPN)  
UWB设备部署在室外,主要适用于PDA上行和信息交换,新闻文本,图片和视频的下载。采用何种标准将决定OPPN结构使用集中式还是分布式的,这是一个需要进一步研究的课题。欧洲即将采用的UWB标准将严格限制支持室外的UWB设备的部署。然而,这种情况可能会改变,因为UWB管制的使用也将不断进步,如同过去其他无线业务所经历的一样。  

(5) 传感器,定位和识别网(SPIN)  
SPIN系统的特征是:设备密度高,每层几百个,主要在工厂或者仓库,发送带有定位信息的低速数据包。SPIN设备使用范围较大,如果为主从拓扑,在单独设备和主站之间可达100 m。在工业应用中,SPIN需要高级链路可靠性和自适应的系统特征,以对动态改变的接口和传播环境作出反应。UWB将起到的一个重要作用是:根据用户需求提供有效的业务。场景机制的划分和各种网络的发展,包括上面分析的各种情况,是远远不能满足用户的期望的。一个宏伟的目标是,在不同场景下,实现各种网络的无缝共存和互操作性。因此,设计有效的连接,自动漫游机制和数据链路的自适应,是将来一个重要的研究课题。  

4 技术挑战  

基于窄带载波调制的短距离无线系统,不能提供高速数据速率来传输视频或者准确的移动终端位置信息,不能支持位置敏感的应用,但是今天的市场很需要有这种能力的系统,这也是UWB的一个研究目标。在UWB设备之间的相互干扰和可达到的QoS级方面,仍然有很多未解决的问题。考虑位置敏感的应用,有必要决定一个给定的应用所需的准确性,这个质量级在可变信道和网络负载条件下能否维持仍然没有定论。  

在调制和编码技术领域也存在挑战。最初,UWB-RT用于军事通信,获得高容量不是一个主要目标。然而,在商用系统中,用户容量是首先要考虑的。编码和调制是能够改善系统多用户容量的最有效方法之一,设计自适应的调制方法和信道编码机制来提高系统容量。尽管在UWB中,平均EIRP是很低的,短时间内的峰值功率可能很大,因此,要求能够优化传输技术(如自适应功率控制)。为适应不同的信号传播环境,各种高级技术,如UWB-MIMO,能够提供所需的高可靠性和自适应能力。与窄带系统不同,UWB系统受到更少的信号衰落,因为很窄的脉冲在不同路径上传播,引起大量独立衰落的信号成分,可以加以区分,由于高时间分辨率,导致很大的多径分集。UWB-MIMO系统也可抗时域ISI和ICI,因为接收信号有很好的自相关和互相关特性,能简单适应脉冲重复频率到主要的信道时延扩展。  

此外,尽管UWB系统有抵抗多径影响的能力,但系统性能同样受到多径效应的影响。极端情况下信号传播会引起室内环境中大量的多径,导致传播时延持续10 mS至几百ms,这引起的ISI限制了系统的最大数据速率,除非有一种有效的方法可以用来减轻这些影响。在快速脉冲调制技术(如PPM),实现有效均衡的成本很高,这个问题在使用低脉冲重复频率系统中较轻。系统复杂性是另外一个挑战,UWB需要多个并行检测器或者高阶调制。  

另外一个挑战来自于物理层UWB设备的天线设计和实施。一般来说,便携式通信设备要求很小和不易受损的天线,可以集成到设备中,能够在不同的环境下有效工作。有效天线的设计和实施,是UWB系统设计中的一个巨大挑战。  

另外一个问题是,来自于其他无线信号对UWB接收机的带内干扰的影响。近处干扰问题引起了学术界的极大兴趣,UWB设备发射功率谱密度很小,UWB接收机中容易受到噪声影响和干扰。当一个区域有大量集中的UWB设备同时工作时,也有相同的问题,还有多径传播的不利影响和设备间干扰现象,以及要考虑在接收机和网络层如何发起和维持同步。  

最后,除了非线性模电设计技术外,还需进一步研发在UWB系统使用新的、先进的半导体技术,如MEMS,SOI等。这些技术可以提供有效的方案解决速度和同步时延,功率消耗等问题,他们的成功研发对UWB-RT的未来开发和应用是至关重要的。  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top