基于智能天线技术的TD—SCDMA系统用研究
TD-SCDMA系统的智能天线是由8个天线单元的同心阵列组成的,直径为25 cm。同全方向天线相比,它可获得较高的增益。TD-SCDMA智能天线的高效率是基于上行链路和下行链路的无线路径的对称性而获得的。此外,智能天线可减少小区间干扰,也可减少小区内干扰。智能天线的这些特性可显著提高移动通信系统的频谱效率。
由于每个用户在小区内的位置都是不同的。这一方面要求天线具有多向性,另一方面则要求在每一独立的方向上,系统都可以跟踪个别的用户。通过DSP控制用户的方向测量使上述要求可以实现。每用户的跟踪通过到达角进行测量。在TD-SCDMA系统中,由于无线子帧的长度是5 ms,则至少每秒可测量200次,每用户的上下行传输发生在相同的方向,通过智能天线的方向性和跟踪性,可获得其最佳的性能。
在TD-SCDMA系统中,基站系统通过数字信号处理技术与自适应算法,使智能天线动态地在覆盖空间中形成针对特定用户的定向波束,充分利用下行信号能量并最大程度的抑制干扰信号。基站通过智能天线可在整个小区内跟踪终端的移动,这样终端得到的信噪比得到了极大的改善,提高业务质量。
WCDMA和CDMA 2000都允许在上行和下行链路为每个移动用户分配专门的导频信道,但是要求使用智能天线系统。对于WCDMA和CDMA 2000系统而言,智能天线虽然是推荐配置,但是当今的一些WCDMA和CDMA 2000的基站产品已经开始支持智能天线了。
2.2 TD-SCDMA中智能天线技术的实现
智能天线通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,即自适应或以预置方式控制波束幅度、指向和零点位置,使波束总是指向期望方向,而零点指向干扰方向,实现波束随着用户走,从而提高天线的增益和信干噪比。其基本结构如图2所示。
由图可见,智能天线系统由3部分组成:天线阵列、波束形成网络、控制算法。天线以多个高增益的动态窄波束分别跟踪多个期望信号,来自窄波束以外的信号被抑制。但智能天线的波束跟踪并不意味着一定要将高增益的窄波束指向期望用户的物理方向,事实上,在随机多径信道上移动用户的物理方向是难以确定的,特别是在发射台至接收机的直射路径上存在阻挡物时,用户的物理方向并不一定是理想的波束方向。
智能天线波束跟踪的真正含义是在最佳路径方向形成高增益窄波束,并跟踪最佳路径的变化。理想前景是空分多址(SDMA),它不是信道复用的概念,而是一种信道倍增方式,可与FDMA,TDMA,CDMA等系统完全兼容,从而实现组合的多址方式。智能天线关键是自适应波束形成算法,常用的波束形成算法主要有两种:非盲波束形成算法和盲波束形成算法。智能天线的优势如下:提高频谱利用率;抗衰落;改善链路质量,增加可靠性;减小多径效应;降低功率,减小成本;提高通信的安全性;实现移动台定位业务。
3 结语
美国、欧洲和日本非常重视未来移动通信中智能天线的作用,已经开展大量的理论分析和研究。我国也已经将研究智能天线技术列入国家863-317通信技术主题研究中。在ITU认定的几个技术发展方向中,包含了智能天线和TDD时分双工技术,认为这两种技术都是以后技术发展的趋势,而智能天线和TDD时分双工这两项技术,在目前的TD-SCDMA标准体系中已经得到了很好的体现和应用,从这一点中,也能够看到TD-SCDMA标准的技术有相当的发展前途。2
TD-SCDMA 智能天线 自适应算法 波束形成 相关文章:
- TD-SCDMA关键技术介绍(02-02)
- WiMAX之WiBro(08-07)
- TD-SCDMA联盟成员(02-02)
- 什么是TD-SCDMA(02-02)
- TD-SCDMA与其他3G技术介绍(02-02)
- TD-SCDMA技术发展历程(02-02)