基于DSP的高速PCB抗干扰设计
时间:09-16
来源:互联网
点击:
时钟的布局
对于时钟、片选和总线信号,应尽量远离I/O线和接插件。DSP系统的时钟输入,很容易受到干扰,对它的处理非常关键。要始终保证时钟产生器尽量靠近DSP芯片,使时钟线尽量短。时钟晶体振荡器的外壳最好接地。
(4)退耦布局
为了减小集成电路芯片电源上的电压瞬时过冲,对集成电路芯片加退耦电容,这样可以有效地去除电源上毛刺的影响,并减少在PCB上的电源环路反射。加退耦电容可以旁路掉集成电路器件的高频噪声,还可以作为储能电容,提供和吸收集成电路开关门瞬间的充放电能。
在DSP系统中,对各个集成电路安放退耦电容,像DSP、SRAM、Flash等,在芯片的每个电源和地之间添加,而且要特别注意,退耦电容要尽量靠近电源提供端(source)和IC的零件脚(pin)。保证从电源提供端(sotlrce端)和进入IC的电流的纯净,并且尽量能让噪音的路径缩短。如图2所示,处理电容时,使用大的过孔或多个过孔,且过孔到电容间的连线应尽量短、粗。2个过孔距离远时,因为路径太大,不好;最好的就是退耦电容的2个过孔越近越好,可以使噪声以最短路径到地。
另外在电源输入端或电池供电的地方加上高频电容是非常有利的。一般情况下,对退耦电容的取值不是很严格,一般按C=l/,计算,即频率为10 MHz时取0.1μF的电容。
(5) 电源的布局
在进行DSP系统开发时,电源需要慎重考虑。因为一些电源芯片发热量很大,应优先安排在利于散热的位置,要与其他元器件隔开一定距离。可以利用加散热片或在器件下面铺铜来进行散热处理。注意在开发板底层不要放置发热组件。
(6) 其他注意
对于DSP系统其他组件的布局应该尽量考虑到焊接方便、调试方便和美观等要求。如对电位器、可调电感线圈、可变电容器、拨码开关等可调器件要结合整体结构放置。对于超过15 g的器件要加固定支架再焊接,特别注意要留出PCB的定位孔及固定支架所占用的位置。PCB边缘的元器件离PCB板边距离一般不要小于2 mm,PCB最好为矩形,长宽比为3:2或4;3。
2.3布线设计
在综合考虑到增加DSP系统抗干扰性,增强EMC能力进行布局后,布线也要有一些措施和技巧。
(1) DSP的布线
布线大体上是从核心器件开始,并以其为中心展开。对于DSP这种PQFP(Plastic Quad FIat Pack)或BGA(BaIl Grid Arrayr)封装的器件,如图3所示,应先根据SRAM、Flash和CPLD的布局位置大体判断出走线方向,对引脚进行扇出(fanout)操作。特别是对于QFP&BGA类型的器件,扇出就显得尤其重要。在布线开始之初,就先把BGA类型器件的引脚作扇出,可以为后面的布线节省时间,并可以提高布线的质量和效率。在布线时,合理利用EDA工具的特点,比如power PCB的dynamicc rou-ting,可以最优计划空间。用dynamic的时候,这个功能会自动让线与线之间的空间保持在规则里面,不浪费空间,减少后续修改,提高布线的质量和效率。
对于高速DSP还要注意串扰及蛇行(delay tune)走线处理。蛇行走线处理,如图4所示,可以保证信号的完整性,还要保证高速信号参考平面的连续性。在需要作平面分割的时候,一定注意不要让高速线跨不连续的平面;非要跨,就加跨平面的电容,如图5所示。
当信号线(trace)间隔3倍信号线宽时,信号间相互串扰(coupling)的几率只有25%左右,这样就可以达到抗电磁干扰(EMI)的要求。所以,像CLK和SRAM这些高速信号线,切记与它旁边的信号线远离3倍宽以上,调等长时,即蛇型走线,线与线的宽度也要3倍信号线宽以上,包括对于其本身的信号线也要3倍信号线宽。如图6所示,线宽5 mil*,绕线本身内部的距离是15mil,大于等于3倍的线宽。
(2) 时钟的布线
对于时钟信号,要使其对于其他信号的走线距离尽量大,保证在4倍线宽以上的距离,并且在时钟(零件)的下面不要走线;对于模拟电压输入线,参考电压端和I/0信号线尽量远离时钟。
(3) 对系统电源的处理
电源是系统中最重要的部分。在PCB的层叠设计中分配了单独的电源层,但由于一个DSP系统有多种数字和模拟器件,这样所用到的电源也有多种,所以对电源层进行了分割,使相同电源特性的器件分割在同一区域内,可就近连接到电源层。但要特别注意,进行分割的时候要注意使参考电源平面的信号连续。经过实验证明,40 mil的线宽,可以通过的电流能保证有l A;对于过孑L,钻径为16 mil的可以通过1 A的电流,所以对于DSP系统,电源线大于20 mil即可。对于电源线上的电磁辐射防护要注意以下几点:
◆用旁路电容限制电路板上交流电流的泄漏;
◆在电源线上串接共模扼流圈(common modechoke),以抑制流经线中的共模电流;
◆布线靠近,减小磁辐射面积。
对于时钟、片选和总线信号,应尽量远离I/O线和接插件。DSP系统的时钟输入,很容易受到干扰,对它的处理非常关键。要始终保证时钟产生器尽量靠近DSP芯片,使时钟线尽量短。时钟晶体振荡器的外壳最好接地。
(4)退耦布局
为了减小集成电路芯片电源上的电压瞬时过冲,对集成电路芯片加退耦电容,这样可以有效地去除电源上毛刺的影响,并减少在PCB上的电源环路反射。加退耦电容可以旁路掉集成电路器件的高频噪声,还可以作为储能电容,提供和吸收集成电路开关门瞬间的充放电能。
在DSP系统中,对各个集成电路安放退耦电容,像DSP、SRAM、Flash等,在芯片的每个电源和地之间添加,而且要特别注意,退耦电容要尽量靠近电源提供端(source)和IC的零件脚(pin)。保证从电源提供端(sotlrce端)和进入IC的电流的纯净,并且尽量能让噪音的路径缩短。如图2所示,处理电容时,使用大的过孔或多个过孔,且过孔到电容间的连线应尽量短、粗。2个过孔距离远时,因为路径太大,不好;最好的就是退耦电容的2个过孔越近越好,可以使噪声以最短路径到地。
另外在电源输入端或电池供电的地方加上高频电容是非常有利的。一般情况下,对退耦电容的取值不是很严格,一般按C=l/,计算,即频率为10 MHz时取0.1μF的电容。
(5) 电源的布局
在进行DSP系统开发时,电源需要慎重考虑。因为一些电源芯片发热量很大,应优先安排在利于散热的位置,要与其他元器件隔开一定距离。可以利用加散热片或在器件下面铺铜来进行散热处理。注意在开发板底层不要放置发热组件。
(6) 其他注意
对于DSP系统其他组件的布局应该尽量考虑到焊接方便、调试方便和美观等要求。如对电位器、可调电感线圈、可变电容器、拨码开关等可调器件要结合整体结构放置。对于超过15 g的器件要加固定支架再焊接,特别注意要留出PCB的定位孔及固定支架所占用的位置。PCB边缘的元器件离PCB板边距离一般不要小于2 mm,PCB最好为矩形,长宽比为3:2或4;3。
2.3布线设计
在综合考虑到增加DSP系统抗干扰性,增强EMC能力进行布局后,布线也要有一些措施和技巧。
(1) DSP的布线
布线大体上是从核心器件开始,并以其为中心展开。对于DSP这种PQFP(Plastic Quad FIat Pack)或BGA(BaIl Grid Arrayr)封装的器件,如图3所示,应先根据SRAM、Flash和CPLD的布局位置大体判断出走线方向,对引脚进行扇出(fanout)操作。特别是对于QFP&BGA类型的器件,扇出就显得尤其重要。在布线开始之初,就先把BGA类型器件的引脚作扇出,可以为后面的布线节省时间,并可以提高布线的质量和效率。在布线时,合理利用EDA工具的特点,比如power PCB的dynamicc rou-ting,可以最优计划空间。用dynamic的时候,这个功能会自动让线与线之间的空间保持在规则里面,不浪费空间,减少后续修改,提高布线的质量和效率。
对于高速DSP还要注意串扰及蛇行(delay tune)走线处理。蛇行走线处理,如图4所示,可以保证信号的完整性,还要保证高速信号参考平面的连续性。在需要作平面分割的时候,一定注意不要让高速线跨不连续的平面;非要跨,就加跨平面的电容,如图5所示。
当信号线(trace)间隔3倍信号线宽时,信号间相互串扰(coupling)的几率只有25%左右,这样就可以达到抗电磁干扰(EMI)的要求。所以,像CLK和SRAM这些高速信号线,切记与它旁边的信号线远离3倍宽以上,调等长时,即蛇型走线,线与线的宽度也要3倍信号线宽以上,包括对于其本身的信号线也要3倍信号线宽。如图6所示,线宽5 mil*,绕线本身内部的距离是15mil,大于等于3倍的线宽。
(2) 时钟的布线
对于时钟信号,要使其对于其他信号的走线距离尽量大,保证在4倍线宽以上的距离,并且在时钟(零件)的下面不要走线;对于模拟电压输入线,参考电压端和I/0信号线尽量远离时钟。
(3) 对系统电源的处理
电源是系统中最重要的部分。在PCB的层叠设计中分配了单独的电源层,但由于一个DSP系统有多种数字和模拟器件,这样所用到的电源也有多种,所以对电源层进行了分割,使相同电源特性的器件分割在同一区域内,可就近连接到电源层。但要特别注意,进行分割的时候要注意使参考电源平面的信号连续。经过实验证明,40 mil的线宽,可以通过的电流能保证有l A;对于过孑L,钻径为16 mil的可以通过1 A的电流,所以对于DSP系统,电源线大于20 mil即可。对于电源线上的电磁辐射防护要注意以下几点:
◆用旁路电容限制电路板上交流电流的泄漏;
◆在电源线上串接共模扼流圈(common modechoke),以抑制流经线中的共模电流;
◆布线靠近,减小磁辐射面积。
DSP PCB 集成电路 电路 传感器 电流 EMC 电容 CPLD 总线 振荡器 电压 电感 电容器 EDA 模拟电路 电阻 相关文章:
- 高速DSP系统PCB板的可靠性设计分析(03-01)
- 电路板维修中的方法与技巧(05-14)
- 绘制数显温度计电路图及PCB设计方法(04-01)
- PCB设计常见问题104个解答(三)(07-24)
- PCB设计常见问题104个解答(四)(07-24)
- 混合信号电路板的设计准则(09-04)