微波EDA网,见证研发工程师的成长!
首页 > PCB和SI > EDA和PCB设计文库 > 正确的布局和元件选择是控制EMI的关键

正确的布局和元件选择是控制EMI的关键

时间:12-06 来源:互联网 点击:


  图10. 不同几何形状的磁芯具有不同的储能能力、磁辐射和组装难易程度,它们均可增加气隙。


  或许在降低磁辐射方面表现最好的磁芯是具有分布式气隙的磁环。这种磁芯采用填充材料和高磁导率金属粉末混合后压制成型。被非磁性填充物分隔的金属粉末颗粒中有小的气隙,能够产生均匀分布在整个磁芯的总“气隙”。线圈环绕磁环绕制,使磁场在线圈中间沿着磁环形成圆环。当线圈绕满磁环整个圆周时,它就完全包围住磁场将其屏蔽起来。
  分布气隙式磁环的能损有时会比开有气隙的铁氧体磁芯更高一些,这是由于组成芯体的金属颗粒中容易形成涡流,导致磁芯发热而使电源效率降低。由于线圈必须穿过磁环中心,绕制比较困难,所以这种类型的电感也比较贵。线圈绕制可由机器完成,但比起传统类型的绕线机,这种类型的机器更贵而且操作更慢。
  有些铁氧体磁环具有非连续的气隙。这种磁芯所产生的磁辐射高于上述分布气隙式磁芯,但典型的带气隙磁环具有比较低的能损,因为它们封闭磁场的能力要优于其它类型的具有非连续气隙的铁氧体磁芯。用线圈包围气隙可以降低磁辐射,而环状磁芯更有助于将磁场封闭于芯体内部。

  变压器

  变压器具有许多和电感共有的局限,因为它们采用同样的磁芯绕制而成。除此之外,变压器还有一些独有的特性。实际变压器的特性接近于理想变压器—以正比于绕组匝比的电压比率从初级向次级耦合电压。
  在变压器等效电路中(图11),绕组间的分布电容等效为电容CWA和CWB。这些因素带来的主要问题是隔离电源中的共模散射问题。绕组电容CP和CS很小,在开关型电源和调节器的工作频率下通常可以忽略。励磁电感LM的作用很重要,因为过高的励磁电流会造成变压器饱和。和电感一样,饱和状态下变压器的磁辐射将会增加。饱和还会造成更高的磁芯能损,更高的温升(有可能引起热失控),以及降低绕组间的耦合度。

  

  图11. 变压器等效模型中的分布元件使其理想工作特性发生变化


  漏感是由仅匝链一个绕组而未匝链其它绕组的磁场产生的。虽然在有些耦合式电感和变压器(就象前面讨论的共模扼流圈)中有意将这个参数设计得比较大,但对于开关电源来讲,漏感LLP和LLS常常是最令人头痛的寄生元件。同时匝链两个绕组的磁通将两个绕组耦合为一体。所有变压器绕组都环绕磁芯,因此任何漏感都存在于磁芯外部,在空气中,会向外界产生磁辐射。
  漏感带来的另外一个问题是,当电流迅速变化时会产生大电压,这在大多数开关电源变压器中有所表现。这种大电压会使开关晶体管或整流器过压而损坏。吸收缓冲器(通常是一只串联的电阻和电容)常被用来耗散这种电压尖峰的能量,而使电压得到控制。另一方面,有些开关器件被设计为可以承受一定的重复性雪崩击穿,能够耗散一定功率,可以不用外部缓冲器。
  变压器漏感的测定很简单,只需短路次级线圈,然后测量初级电感即可。这种测量结果中也包含了通过变压器耦合的次级漏感,多数情况下,这个漏感也必须加以考虑,因为它也会增加初级侧的电压尖峰。对应的尖峰能量可按公式E = ½LI²计算,这样,漏感造成的功率消耗就是每一尖峰的能量乘以开关频率:P = ½LI²f。
  对于变压器的具体要求和不同的电源拓扑有关。有些拓扑通过变压器直接耦合能量,例如半桥、全桥、推挽式或正激式转换器,这就要求非常高的励磁电感以防止饱和。这些电路中变压器的初级和次级线圈同时传输电流,直接通过变压器耦合能量。由于只有很少的能量储存于磁芯中,变压器可以做得比较小。这种变压器通常采用没有气隙的铁氧体或其它高磁导率材料的磁芯绕制而成。
  另外一些电源拓扑则要求变压器磁芯储存一定的能量。反激式电路中的变压器在开关周期的前半部分通过初级线圈储能。在开关周期的后半部分,能量被释放并通过次级线圈馈向输出。和电感的情况一样,不带气隙的高磁导率磁芯不太适合变压器储能。相反,磁芯必须具有不连续的或分布式的气隙。这会使元件的尺寸比不带气隙时的情况更大一些,但却省去了额外的储能电感,因此更加节省成本和空间。
栏目分类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top