微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 用于定位的低功耗有源RFID标签设计方案

用于定位的低功耗有源RFID标签设计方案

时间:10-13 来源:电子世界 点击:

2012被中断唤醒后开始判断指令是否正确,如果正确则进入正常发送周期,否则返回LPM3模式。

  考虑到实时定位的需要,系统不能像一般的RFID标签那样仅仅进行有限次验证,本系统采用等间隔持续发送的模式,便于阅读器实时监测目标位置,系统设定的正常发送周期为500ms,由MSP430F2012的Timer_A定时,500ms定时开始后,标签ID通过SPI发送到FIFO,nRF24L01采用了增强型ShockBurstTM模式,发送失败则会继续重发,标签ID发送完毕后,MSP430F2012判断定时器是否超时,一旦超时则进入下个发送周期,否则处于等待状态直至超时。当阅读器停止广播"开始"指令,MSP430F2012重新进入LPM3模式以降低功耗。系统完整流程如图3所示。

  

  3.2 防冲突设计

  nRF24L01自带载波检测功能,在发送数据前先转入接收模式进行监听,确认要传输的频率通道未被占用才发送数据,利用此功能可实现简单的硬件防冲突。

  考虑到本系统采用了500ms的统一发送间隔,在被定位目标众多的场合有可能发生识别冲突,因此需要在程序中合理的增加防冲突算法。ALOHA算法主要用于有源标签,其原理就是,一旦信源发生数据包碰撞,就让信源随机延时后再次发送数据。考虑到程序的复杂性势必引起处理时间的增加,也会带来额外的能耗,本系统采用了较为简单的纯ALOHA算法,即在每个500ms计时周期内随机发送标签ID,这就需要在程序中插入一个随机延时,延时时长的选择通过一个随机值函数来实现,随机延时范围为0~300ms.这种简单的防冲突算法既简化了指令,又能大幅降低冲突概率。

  另外,nRF24L01传输速率为1Mbps或2Mbps,单次发送一个数据包,单个数据包最大 32bytes,假设标签ID为32bytes,以2Mbps速率发送一次ID的信号宽度(传输时间)约为100~150μs,相对于500ms的整个定时周期而言微乎其微,但仍有可能出现发送饱和的状态,这时可以适当的延长计时周期以增加信道容量。较快的传输速率有助于移动目标的识别和定位,而较短的数据长度也能显着提高标签基于随机延时的防冲突能力,因此尽可能将标签ID的长度限制在32bytes以内。

  3.3 部分程序代码

  3.3.1 单字节SPI发送/接收函数

  

  3.3.2 根据命令字读/写接收(发送)数据包

  

  4.测试结果

  对于R F I D系统而言,最重要的参数就是读取距离[7]和有效读取率。本次实验测试设备为标签3枚,阅读器一台,PC一台,阅读器基于MSP430F149($5.2425)和 nRF24L01芯片设计,并通过RS232($780.5000)串口与PC进行通信。测试中,分别将3枚标签置于距离阅读器1 5 m、3 0 m、4 5 m处,便签I D分别为AABBCCDDFFFFFF01、AABBCCDDFFFFFF02、AABBCCDDFFFFFF03,每枚标签进行一小时(约7200次)连续读取测试。测试界面如图4所示。

  从表1所示测试结果看,3 0 m以内为标签正常读取距离,可满足一般的室内应用,距离为45m时读取率则显着下降。由于天线的设计对系统性能有较大影响,通过改进标签的天线以获取较大输出功率,改进阅读器端天线接收灵敏度也能显着提高系统性能。

  

  5.结束语

  本文对基于MSP430F2012和nRF24L01的有源RFID标签的设计进行了详细的介绍。对2款芯片的低功耗性能进行了分析并提出了自己的低功耗设计方案;结合了RFID定位的特点,介绍了有别于一般以识别为主要目的的标签的设计方案,分析了其软件设计流程;针对一般空间内被识别目标众多且常处于移动状态的特点,介绍了系统的防冲突能力。整个方案的设计体现出了电路简单,尺寸小,功耗低,通过良好匹配的天线通信距离可达几十米,如需进行远距离RFID测量或定位,可在硬件上增加数字功放电路,通信距离可达500米以上。可以满足多种行业对于一般小范围空间内的定位需求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top