基于RFID的天线阻抗自动匹配技术的设计
S11近似为0。这种检查流程已成功经过几种不同阻抗的RFID天线检测,在频率为13.
56MHz时,测试天线的S11参数偏差都大体相同。
这表明,这个偏差在测量电路中,是不可避免的,且不影响匹配。
图5 天线的smit图
2. 2 匹配电路
匹配电路是在微控器作用下来自动匹配天线的阻抗。在设计中,用其它可调电容电路将图1中电容C1 和C2 替换。通常有三种类型的替换方法:
(1)微调电容器;(2)二极管电容;(3)电容阵列。
机械微调电容器既不是集成的也不是电可控的,二极管电容不能充分隔离信号电压和控制电压。
因此,最好的方法是用电容阵列,如图6所示,由半导体开关控制。将图1 中的C1、C2 用电容阵列取代。当电容值在1到50 pF之间时,开关选用了低电容DMOS开关。与普通开关不同, DMOS开关存在寄生效应。在断开期间,开关引脚之间、信号引脚与地之间都存在这寄生电容。这些电容使得电容阵列的调谐范围变窄,同样也使天线阻抗的调谐范围变窄。这个问题仍然有待于进一步的研究。
图6 电容阵列网络
2. 3 控制器
控制器处理测量电路测到得数据,计算Vd 的值,并进一步控制DMOS开关,达到阻抗的匹配,同时它内部集成的模数转换器可以使幅值和相位值数字化。在手动阻抗匹配中,是调整C1 和C2 使幅值和相位偏移尽可能的为0。用一个简单的算术来说明这个思路,当每一个被测对象被认为是二维平面里的一个点时,该点到零点的距离d可以用公式计算: d2 =A2 +φ2。幅值A 作为横坐标,相位偏移φ作为纵坐标。因此,控制器调谐算法就是要找到最短的路径d。在实际计算中, 用该算法扫描所有的电容组合,以得到一组电容值使d2 最小,用这组数据来匹配阻抗。
3 功能验证
设计完成后,用A,B两种阻抗不同的天线测试了完整的调谐系统,每种天线测试2 到3 轮不等。
结果如图7所示,对于A, B两种天线的任何一种,都找到了最优C1 和C2 的组合。当频率为13. 56MHz时,两类天线的反射系数虽然与0点都有一定的偏差,但其偏差都在可接受范围之内。
图7 自动匹配天线的smit图
4 结论
本文提出了一种适用于天线的阻抗自动匹配方法,基于此方法设计了集测量电路,匹配电路,控制电路于一体的集成RFID天线阻抗自动匹配虚拟系统。最后,通过实验测试,该系统模型运作良好,大体实现了匹配要求。然而,电容阵列的优化,匹配算法的改进等还有待进一步的研究。
- PAM-CEM:三维电磁仿真方案(06-14)
- 电子工程师必须懂的高频PCB设计、EMI、EMC等设计技巧(08-04)
- EMC/EMI模拟仿真与PCB设计相结合(09-04)
- EMC/EMI的仿真在PCB设计中的重要性(09-28)
- EMC十问十答,带你了解电磁兼容的“前世今生”(09-03)
- 汽车收音机射频电路设计指南(04-10)