模数转换器的基本原理及不同类型ADC特点
模数转换器通常将一个输入电压信号转换为一个输出的数字信号,ADC作为电路中重要的元器件,本文将介绍模数转换器的基本原理、转换步骤、主要技术指标以及不同类型ADC的特点。
1 模数转换器的基本原理
将模拟量转换成数字量的过程称为"模数转换"。完成模数转换的电路 称为模数转换器,简称 ADC(Analog to Digital Converter)。
2 实现模数转换的步骤
模数转换一般要经过采样、保持和量化、编码这几个步骤。
采样定理:当采样频率大于模拟信号中最高频率成分的两倍时,采样 值才能不失真的反映原来模拟信号。
3 模数转换器的主要技术指标
转换精度 集成 ADC 用分辨率和转换误差来描述转换精度。
(1)分辨率
通常以输出二进制或十进制数字的位数表示分辨率的高低,因为位数越多,量化单位越小,对输入信号的分辨能力就越高。
例如:输入模拟电压的变化范围为 0~5 V,输出 8 位二进制数可以
分辨的最小模拟电压为 5 V×2-8 =20 mV;而输出 12 位二进制数可以
分辨的最小模拟电压为 5 V×2-12≈1.22 mV。
(2) 转换误差
它是指在零点和满度都校准以后,在整个转换范围内,分别测量各个 数字量所对应的模拟输入电压实测范围与理论范围之间的偏差,取其 中的最大偏差作为转换误差的指标。通常以相对误差的形式出现,并 以 LSB 为单位表示。例如 ADC0801 的相对误差为±¼ LSB。
转换速度
完成一次模数转换所需要的时间称为转换时间。大多数情况下,转换 速度是转换时间的倒数。
ADC 的转换速度主要取决于转换电路的类型,并联比较型 ADC 的转换速度最高(转换时间可小于 50 ns),逐次逼近型 ADC 次之(转 换时间在 10~100μs 之间),双积分型 ADC 转换速度最低(转换时 间在几十毫秒至数百毫秒之间)。
4 模数转换器的构成及不同类型模数转换器的特点
模数转换器的种类很多,按工作原理的不同,可分成间接 ADC 和直 接 ADC。
间接 ADC 是先将输入模拟电压转换成时间或频率,然后再把这些中 间量转换成数字量,常用的有中间量是时间的双积分型 ADC。
直接 ADC 则直接转换成数字量,常用的有并联比较型 ADC 和逐次 逼近型 ADC。
并联比较型ADC:由于并联比较型ADC采用各量级同时并行比较, 各位输出码也是同时并行产生,所以转换速度快是它的突出优点,同 时转换速度与输出码位的多少无关。并联比较型ADC的缺点是成本 高、功耗大。因为n位输出的ADC,需要 2n 个电阻,(2n -1)个比较器和D触发器,以及复杂的编码网络,其元件数量随位数的增加,以 几何级数上升。所以这种ADC适用于要求高速、低分辩率的场合。 逐次逼近型ADC:逐次逼近型ADC是另一种直接ADC,它也产生一 系列比较电压VR,但与并联比较型ADC不同,它是逐个产生比较电压, 逐次与输入电压分别比较,以逐渐逼近的方式进行模数转换的。逐次 逼近型ADC每次转换都要逐位比较,需要(n+1)个节拍脉冲才能完 成,所以它比并联比较型ADC 的转换速度慢,比双分积型ADC要快 得多,属于中速ADC器件。另外位数多时,它需用的元器件比并联比 较型少得多,所以它是集成ADC中,应用较广的一种。
双积分型 ADC:属于间接型 ADC,它先对输入采样电压和基准电压 进行两次积分,以获得与采样电压平均值成正比的时间间隔,同时在 这个时间间隔内,用计数器对标准时钟脉冲(CP)计数,计数器输 出的计数结果就是对应的数字量。双积分型 ADC 优点是抗干扰能力 强;稳定性好;可实现高精度模数转换。主要缺点是转换速度低,因此这种转换器大多应用于要求精度较高而转换速度要求不高的仪器 仪表中,例如用于多位高精度数字直流电压表中。
- 一种用于高速ADC的采样保持电路的设计(04-19)
- 带辅助DAC的双路Σ-Δ转换器的原理及应用(09-01)
- 采用开关电源为高速模数转换器供电(10-11)
- 在PCB级采用时间交替超高速模数转换器(01-28)
- 14位125Msps模数转换器ADS5500及其应用 (03-06)
- 关于新型压电式器件简化振动能量收集(03-21)