微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 无线传感器网络2.4GHzLNA设计

无线传感器网络2.4GHzLNA设计

时间:02-01 来源:21IC电子网 点击:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

图1 低噪声放大器原理图

该低噪声放大器主体电路采用共源共栅的差分结构,由于共栅级电路的输入阻抗很小,抑制了共源级的电压增益,从而遏制了密勒效应,提高了反向隔离度,同时使输入阻抗受共源管M1、M2 栅漏间电容以及后级电路影响变小,使放大器稳定性增强。

在该结构中,片内电阻R1、R2 分压产生偏置电压Vbias ,通过Rg1、Rg2加在共源管M1、M2 栅极, 为其提供直流偏置。为了保证较低的噪声系数, Rg1、Rg2应选取阻值较大的电阻, 以隔离偏置电路中电阻R1、R2 带来的噪声。晶体管M3、M4 为共栅MOS管。

片内源极电感Ls1、Ls2以及M1、M2 栅源间附加电容Cex1、Cex2配合栅极片外电感Lg1、Lg2 , 实现低噪声放大器的输入匹配。电感Ld1、Ld2分别和电容Cd1、Cd2并联,再分别与Cd3、Cd4串联, 实现低噪声放大器的输出匹配。

分析图1所示差分共源共栅放大器的半电路工作状态,对于工作于饱和区的MOS管有:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

为保证低噪声放大器满足较小的噪声系数,放大电路中的MOS管的栅长应尽量选择最小值,本工艺最小栅长为0. 13μm,所以,共源管M1 和共栅管M3 的栅长L1、L3 皆设为0. 13μm。在此情况下,改变共源管和共栅管的栅宽W1、W3 ,可以调整M1、M3的跨导gm1、gm3。根据共源共栅电路性质可知,改变共源管和共栅管的跨导可以改变放大器的增益。本次设计采用1. 2 V电源电压供电,为了保证一定的线性度,以及确保M1 栅源电压Vgs1大于阈值电压Vth (本工艺的Vth约为430 mV) ,选择直流偏置电压Vgs1为600 mV。对于工作于饱和区的MOS管,其漏极电流Id 表示为:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

本次设计要求功耗限制为8 mW, 在偏置电压Vgs1以及各工艺参数都已确定的情况下, 共源管M1和共栅管M3 的栅宽W1、W3 决定了该放大器的工作电流Id ,即决定了放大器的功耗。设计时,在保证增益的前提下, 调整W1、W3 , 仿真得到半电路工作电流约为3 mA,即总电流约为6 mA,满足指标要求。
该低噪声放大器增益控制电路采用信号加成模式,增益控制MOS管Mc1、Mc2由VC1控制,Mc3、Mc4由VC2控制。在半电路中,通过改变Vc1可 以改变Mc1的通断,在Id1不变的情况下,则可以改变流过M3 电流Id3。而工作在饱和区的M3 管的跨导gm3可以表示为:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

所以改变Id3可以改变gm3 , 进而实现放大器增益的改变。

1. 2 输入匹配

图1所示低噪声放大器输入端半电路及其小信号等效电路如图2所示。

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

图2 输入端电路结构及小信号模型

首先考虑输入端未接入M1、M2 栅源间附加电容Cex1、Cex2时的情况。通过输入端电路小信号模型分析得放大器输入阻抗为:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

为了得到最小的噪声系数, 源阻抗最佳值(最佳噪声源阻抗) Zop t应满足:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

其中,α为共源管跨导与其源漏电导的比值。δ为一常数,γ为一系数, 在长沟道器件中,δ的值约为1. 33,γ的值约为0. 67, 在短沟道器件中, 这两个值都会因为短沟道效应而变大。定义c为栅噪声与漏噪声相关系数, 其值一般为0. 395 j, 为一纯虚数,反映了栅和沟道间噪声引起的的容性耦合程度。

源级电感Ls 和栅极电感Lg 不会导致最佳噪声源阻抗的实部发生变化,而仅对电抗部分产生影响。

要实现功率和噪声同时匹配,必须使输入阻抗Zin和最佳噪声源阻抗Zop t共轭匹配, 令Zin = 50 Ω,则有:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

即:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

式(6)中有4个方程, 4个未知数,只有一组解,即功率匹配和噪声匹配同时满足时, 功耗( Id )是确定的,不可以优化。而在限定功耗的情况下,功率匹配和噪声匹配则不可能同时满足。

于是在电路设计中就需要在噪声匹配和功率匹配中进行折中。下面引入M1 管栅源间附加电容Cex ,这样,输入阻抗变为:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

最佳噪声阻抗Z ′ op t表示为:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

这样, 为了使功率和噪声同时匹配, 令Zin =Z ′ op t*= 50Ω,得到:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

式( 9)中有4个方程, 5个未知数,则可以限定任何一个参数,再优化其它参数。所以,在功耗( Id )限定的情况下, 仍然可以进行功率噪声匹配。引入Cex后,通过调整Cex ,首先可以使最佳噪声源阻抗Z ′op t实部为50Ω。

再选择Ls ,使电路满足Re [ Z′in ] = Re [ Z ′op t ] =50Ω。根据式(8) 、式(9)可以推出:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

式(10)指出,选取的Ls 的电感值在引入Cex后亦可以比没有连接Cex时有所降低。Ls 为源极负反馈电感,由于电感中的寄生电阻影响以及该电感本身的负反馈性质,低感值的电感可以做到更好的噪声系数。

最后,调整片外电感Lg ,使谐振频率为ω0 (设计要求ω0 为2. 43 GHz) ,ω0 表示为:

应用于无线传感器网络2. 4 GHz的低噪声放大器设计

由于Cadence工具的局限性,仿真S参数时无法显示Sop t曲线,噪声匹配很难做到最优。在实际设计过程中,当共源管M1、M2 宽长比以及其偏置电路都已经确定时,

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top