好噪声?坏噪声?教你认识ADC输入噪声
况下,采用术语有效分辨率。应当注意,在相同条件下,有效分辨率比无噪声码分辨率大log2(6.6),约为2.7 bit。
一些制造商喜欢采用有效分辨率而不是无噪声码分辨率,因为那样bit位数较高——用户应当仔细检查产品技术资料以确认实际上采用的是哪种分辨率定义。
数字平均提高分辨率和减少噪声
通过数字平均可以减少折合到输入端的噪声的影响。考虑一个16 bit ADC,它以100 kSPS采样速率工作具有15 bit 无噪声码分辨率。对一个同样信号的每次输出采样做两次测量结果平均,使有效采样速率减少到50 kSPS,信噪比(SNR)提高3 dB并且无噪声码分辨率提高到15.5 bit。如果对每次输出采样做四次测量平均,采样速率减少到25 kSPS,SNR提高6 dB并且无噪声码分辨率提高到16 bit。
我们甚至可以进一步对每次输出采样做16 次测量的平均,输出采样速率减少到6.25 kSPS,SNR再增加6 dB,无噪声码分辨率增加到17bit。为了明显提高"分辨率",必须实行多次精密平均。
平均过程也有助于平滑ADC传递函数的DNL误差。这可以通过ADC在量化编码k上有失码的简单情况来举例说明。尽管编码k由于大的DNL误差而失去,但两个相邻编码k–1和k+1的平均值仍等于k。
因此这种方法以牺牲总体输出采样速率和额外数字硬件为代价有效地用来增加ADC的动态范围。还应当注意的是,平均过程不会修正ADC内在的积分线性误差(INL)。
现在,考虑一个具有极低折合到输入端的噪声的ADC的情况,无论进行多少采样,其直方图都示出一个单个编码。对于这个ADC,数字平均会起什么作用? 答案很简单——没有作用! 无论对多少采样进行平均,结果都一样。但是,一旦有足够大的噪声施加到输入信号,就会有多于一个的编码出现在直方图中,平均方法又开始起作用。因而很有意思,有些少量的噪声是好噪声(至少对于平均方法而言);但是,出现在输入端的噪声越多,就需要越多的平均以达到同样的分辨率。
不要混淆有效位数(ENOB)和有效分辨率或无噪声码分辨率
由于术语的相似性,有效位数和有效分辨率经常被以为是相同的。但情况不是这样。
有效位数(ENOB)是当用一个满度正弦波输入信号激励ADC时对其输出的快速傅立叶变换(FFT)分析所产生的。计算所有噪声和失真项的平方和的平方根(RSS)值,可定义信号对噪声加失真的比率,称作信噪失真比〔S/(N+D)〕或信纳比(SINAD)。一个理想的N bit ADC的理论SNR由以下公式给出:
通过将公式5中的SNR用计算出的ADC的SINAD代替并且对N进行求解,可以计算出ENOB。
用于计算SINAD和ENOB的噪声和失真不仅包括折合到输入端的噪声,而且包括量化噪声和失真项。SINAD和ENOB用于测量ADC的动态性能,而有效分辨率和无噪声码分辨率用于衡量在直流输入条件下ADC的噪声,在直流输入条件下量化噪声不是一个问题。
使用噪声抖动提高ADC的无杂散动态范围
无杂散动态范围(SFDR)是RMS信号幅度与最大杂散频谱分量RMS值的比率。在高速ADC中,使SFDR达到最大的两个基本限制是前端放大器和采样保持电路产生的失真以及由于ADC编码器部分的传递函数的非线性产生的失真。获得高SFDR的关键是将这两个非线性误差减至最小。
虽然从ADC外部没有办法显著减少由其前端引起的固有失真,但是通过适当地使用抖动(有意施加到模拟输入信号的外部噪声),可减小ADC的编码器传递函数中的DNL误差。
在某些条件下,可利用抖动来提高ADC的SFDR(见深入阅读资料2~5)。例如,甚至在理想的ADC当中,在量化噪声和输入信号之间也存在相关性。这种相关性会降低ADC的SFDR,尤其是当采样频率是输入信号频率的整数倍时。大约1/2 LSB RMS宽带噪声和输入信号相加以便随机化量化噪声并且将这种相关性影响减至最小(见图5a)。但是,在大多数系统中,噪声已经叠加在信号之上(包括ADC 的折合到输入端的噪声),所以不需要另外的抖动噪声。如果增加宽带RMS噪声超过约一个LSB,那么会按比例减少SNR并且无需其它的改进方法。
另外一种已经开发的噪声抖动方法是使用较大量的抖动噪声以随机化ADC的传递函数。图5b示出一个包含伪随机数发生器驱动一个DAC的抖动噪声源。首先从ADC输入信号中减去这个抖动噪声,然后经过数字化添加到ADC输出端,因此使SNR无明显降低。但是,这种方法有一个固有的缺点,就是当抖动信号幅度增加时必须减小ADC输入信号的摆幅以防止过驱动ADC。应当注意的是,尽管这种方案改善了由ADC编码器非线性产生的失真,但它不能显著改善由其前端产生的失
- 在高速应用中如何利用输入噪声改善ADC性能(11-25)
- ADC输入噪声利弊分析(二)(12-09)
- ADC输入噪声利弊分析(一)(12-09)
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)