微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 如何优化MAX16974-MAX16976的电路布局

如何优化MAX16974-MAX16976的电路布局

时间:05-20 来源:电子发烧友 点击:

  MAX16974/MAX16975/MAX16976转换器是专为汽车应用设计的标准buck控制器。这些控制器通过内部高边N沟道场效应管FET和外部续流二极管工作。合理的PCB (印制线路板)布局,结合适当的外部元件,对于系统的可靠工作和最大限度地降低EMI辐射至关重要。图1所示电路给出了这些高性能转换器的典型应用电路。

  典型应用电路

  

  图1. 典型应用电路

  直流和交流电流路径

  图2所示为MAX16974/MAX16975/MAX16976系列的交流和直流电流路径。

  

  图2a. HSFET导通(黑色)或续流二极管导通(红色)情况下的直流电流路径

  

  图2b. 图2a所示直流电流路径的交流分支

   元件位置对交流电流通路的影响

  为了优化电路板布局、降低EMI,图2b中的交流电流路径非常关键。此路径由输入电容CIN1和CIN2以及肖特基续流二极管D组成。输入电容维持IC在SUB和SUBSW引脚的输入电压稳定。CIN1为大容量电容,而CIN2为陶瓷电容,产生瞬变电流。CIN2的位置非常关键,需要尽可能靠近SUPSW和SUP引脚。利用两个不同的电容作为CIN2,并将它们靠近SUPSW和SUP引脚放置。如果CIN2远离SUP和SUPSW,CIN2和IC引脚之间的电感将造成IC引脚电压的变化,直接影响器件性能。

  肖特基续流二极管是另一重要元件,须靠近IC的LX引脚放置。LX引脚为开关引脚,当直流电流通路在图2a中的"黑色"和"红色"通道之间切换时,该引脚的电流也会发生瞬变,形成IC的一个噪声源。将肖特基续流二极管紧靠LX引脚放置后,可以保持尽可能低的寄生电感,当直流回路切换时有助于降低LX引脚的电压变化。

  另外,可以在LX引脚旁尽可能近的位置放置一个R-C网络缓冲器,R-C网络有助于抑制EMI并防止由于分布电感引起的电压瞬变。控制LX引脚电压的另一方法是在自举电容CBST处串联一个电阻。这会减缓IC内部高边场效应管HSFET的开启,反过来也会限制LX引脚电压的上升速率。

  最后,CIN2、HSFET、肖特基续流二极管和GND形成的交流电流回路,需尽可能采用紧凑布局,缩小环路面积。从而使电流在更小的范围内流通,且远离敏感的IC控制引脚。

  其它元件放置

  完成上述关键元件布局后,其余元件应该放置在周围。电感L1和输出电容COUT应紧邻器件放置,对应的直流回路尽可能小。

  另一个重要元件是BIAS电容CBIAS,该引脚电压为IC内部的所有控制电路供电。此外,当肖特基续流二极管在每个开关周期处于导通期间,自举电容CBST通过偏置电容充电,如图3所示。

  

  图3. 自举电容充电通路(绿色)

  为确保BIAS引脚工作电压稳定,电容CBIAS需要靠近IC引脚放置,使BIAS引脚和电容CBIAS间的引线电感最小。

  散热考虑

  MAX16974在IC底部带有一个裸焊盘,它是器件的主要散热通道。MAX16974内部集成了一个高边场效应管HSFET,可提供2A驱动。为了从器件获取尽可能大的功率,裸焊盘和PCB之间的适当焊接非常关键。MAX16974的裸焊盘处于地电位,将其与地平面焊接在一起有助于散发封装内部的热量,覆铜区域需要加过孔并连接到其它层的地平面。这些过孔有助于改善接地通路,并将封装内的热量扩散到PCB上。

  MAX16974评估板布局

  图4至图8给出了MAX16974评估板(MAX16974EVKIT)的原理图和布局,评估板采用4层印制线路板,并遵循上述布局原则。内部两层(图6和图7)用作地平面,帮助MAX16974通过裸焊盘散热。这些地平面主要通过过孔连接到顶层裸焊盘。

  

   图4. MAX16974EVKIT原理图

  

  图5. MAX16974评估板顶层

  

  图6. MAX16974评估板第二层(地平面)

  

  图7. MAX16974评估板第三层(地层)

  

  图8. MAX16974评估板底层

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top