微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 电磁兼容(EMC) > 干货预警:高速电路的电磁兼容分析与设计

干货预警:高速电路的电磁兼容分析与设计

时间:10-07 来源:网络整理 点击:

以对电路造成干扰。地线导致的噪声干扰主要包括地线环路干扰和公共阻抗耦合干扰。

(a)地线环路干扰:当多个功能单元连接在地线上时,如果地线中的电流足够大,则会在设备间的连接电缆上产生压降。由于各个电路间的电气特性不平衡,每根导线上的电流会不同,因此产生差模电压,从而对电路造成影响。此外外部电磁场也有可能在地线环路中感应出电流,从而导致干扰。

(b)公共阻抗耦合干扰;当多个功能单元公用同一段地线时,由于地线阻抗的存在,各个单元的地电位之间会发生相互调制,从而导致各个单元信号间相互耦合产生干扰,在高频电路中,电路处于高频工作状态,地线阻抗往往较大,此时的公共阻抗耦合干扰尤其明显。

消除公共阻抗耦合的途径有两个:一个是减小公共地线部分的阻抗,这样公共地线上的电压也随之减小,从而控制公共阻抗耦合。另一个方法是通过适当的接地方式避免容易相互干扰的电路共用地线,一般要避免强电电路和弱电电路共用地线,数字电路和模拟电路共用地线。如前所述,减小地线阻抗的核心问题是减小地线的电感。这包括使用扁平导体做地线,用多条相距较远的并联导体作接地线。对于印刷线路板,在双层板上布地线网格能够有效地减小地线阻抗,在多层板中专门用一层做地线虽然具有很小的阻抗,但这会增加线路板的成本。通过适当接地方式避免公共阻抗的接地方法是并联单点接地,并联接地的缺点是接地的导线过多。因此在实际中,没有必要所有电路都并联单点接地,对于相互干扰较少的电路,可以采用串联单点接地。例如,可以将电路按照强信号,弱信号,模拟信号,数字信号等分类,然后在同类电路内部用串联单点接地,不同类型的电路采用并联单点接地.

2.2 抑制耦合通道

高速电路中电磁干扰的主要耦合通道包括辐射耦合、传导耦合、电容耦合、电感耦合、电源耦合以及地线耦合等。

对于辐射耦合来说,其主要抑制方法是采取电磁屏蔽,将干扰源与敏感对象有效隔离。

对于传导耦合来说,其主要的方法是在信号布线的时候,合理安排高速信号线的走向。输入输出端用的导线应尽量避免相邻平行,以免发生信号反馈或串扰,可在两条平行线间增设一条地线加以隔离。对于外连信号线来说,应尽量缩短输入引线,提高输入端阻抗。对模拟信号输入线最好加以屏蔽,当板上信号导线阻抗不匹配时,会导致信号反射,当印制导线较长时,线路电感会导致减幅振荡。通过串入阻尼电阻(阻值通常取22~2 200 hm,典型值为470 hm),可有效抑制振荡,增强抗干扰能力,改善波形.

对于电感、电容的耦合干扰来说,可采用如下两个方面进行抑制:一方面是选择合适的元器件,对于电感电容,应该根据不同元器件的频率特性来选择,对于其他元器件,则应选择寄生电感、电容较小的器件。另一方面是合理地进行布局和布线,要尽量避免长距离平行布线,电路中电气互连点间的布线力求最短。信号(特别是高频信号)线的拐角应设计成45度走向或称圆形、圆弧形,切忌画成小于或等于90度角度形状。相邻布线面导线采取相互垂直、斜交或弯曲走线的形式以减少过孔的寄生电容和电感,过孔和管脚之间的引线越短越好,并可以考虑并联打多个过孔或微型过孔以减少等效电感。选用元器件封装时,应选择标准封装,以减少因封装不匹配而导致的引线阻抗及寄生电感。

对于电源耦合以及地耦合来说,首先应注意降低电源线和地线阻抗,对公共阻抗、串扰和反射等引起的波形畸变和振荡现象需采取必须措施。在各集成电路的电源和地线间分别接入旁路电容以缩短开关电流的流通途径。将电源线和地线设计成格子形状,而不用梳子形状,这是因为格子状能显著缩短线路环路,降低线路阻抗,减少干扰。当印制电路板上装有多个集成电路,且部分元件功耗较大,地线出现较大电位差,形成公共阻抗干扰时,宜将地线设计成封闭环路,这种环路无电位差,具有更高的噪声容限。应尽量缩短引线,将各集成电路的地以最短距离连到电路板的入口地线,降低印制导线产生的尖峰脉冲。让地线、电源线的走向与数据传输方向一致,以提高电路板的噪声容限。尽量采用多层印制电路板,降低接地电位差,减少电源线阻抗和信号线间串扰。当没有多层板而不得不使用双面板时,必须尽量加宽地线线条,通常地线应加粗到可通过3倍于导线实际流过的电流量为宜,或采用小型母线方式,将公共电源线和地线尽量分布于印制板两面的边缘。在电源母线插头处接入1μF~10μF的钽电容器进行去耦,并在去耦电容并联一个0.01 μF~0.1μF的高频陶瓷电容器。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top