关于车载电子EMC,这里有最好的解决办法
易接收到噪声。但电路板缩小后,相同的空间会挤进更多的电子产品。从而导致EMC环境恶化。
——有读者评价您的讲座“功率电子等车载电子产品的EMC兼容设计”富有实践性。为什么能做到这样呢?
前野:可能是因为我在讲课的时候,为了方便实际运用,会注意介绍电子产品产生的具体现象,并且回到基础理论的层面讲解现象。也就是尽可能将实际产品与理论结合起来,这应该是我讲课的一个特点。
学术性讲座大多是以讲解基础理论为主,虽然能够宽泛地进行学习,但运用到设计现场还存在一定难度。而拥有实务经验的讲师在讲课时会结合大量实例,虽然通俗易懂,但不具备普遍性,听众很难在实际工作中活学活用。
而且,大多数的学术性讲座没有一定基础很难听懂。而拥有实务经验的讲师教授大多是“杂学”,虽然能令听众“恍然大悟”、“点头称是”,但不深入讲解基础理论。无论是哪一种,都很难直接应用于实际工作。
因此,我的讲座综合了以实务为基础的讲座和学术性讲座。希望能够为听众正在挑战的EMC对策提供一点参考。
——这应该是实务经验丰富,而且取得了博士学位的前野老师独有的视角。请您通过具体例子,更详细地介绍一下。
前野:例如制作印刷电路板图案的“底片”。在制作过程中有“不能做的事情”和“必须做的事情”。不能做的事情之一是“不能在通用接地层上设置狭缝(去掉细长铜箔的部分)”。这是大多数电路设计人员都知道的“常识”。
比如说,有1块多层印刷电路板上设置了模拟电路、数字电路和电源电路。假设第2层是接地层,通过在图案上设置狭缝,使各条电路的接地分离(成3个)。对于这种情况,一般的讲座给出的说明是“狭缝会导致流出噪声增加。因此应当去掉狭缝,减少流出噪声”。关于狭缝的好坏,多数讲座只会讲到这里,然后就进入下一个话题。
但在我看来,正确方式应该是解释清楚为什么狭缝不好。的确,按照功能电路分离接地层也有起到良好效果的例子。但带来负面影响的情况要多得多。如果囫囵吞枣,条件反射式地记住“狭缝不好”,而不理解其中的原理,在设计现场就会被支持狭缝的上司和客户驳倒。在实际工作中,在不能设置狭缝的地方加入狭缝的情况也时有发生。
为了让大家理解原理,我讲课时首先会解释狭缝有哪些类型,然后讲解哪些狭缝好,哪些不好。然后回到基础理论的层面说明原因,让大家“信服”。
根据实践数据实践性地讲解,最后连同电磁能源的传输在内,对现象进行说明,让大家听懂。
——您现在虽然是EMC对策的专业人士,但年轻时也可能经历过失败。请问您在电装的时候,在EMC对策上吃过哪些苦头?
前野:进入电装的第3年,我作为一名技术人员,职业生涯才刚刚开始。我当时奉命设计车用收发器。因为是第一次主动参与设计,在设计的过程中,我很用心地学习。以前辈设计的取得了良好效果的接收器为基础,通过对高频放大部、频率转换部和局部振荡器进行调整,沿用中频放大器及其后续部件,总算是完成了接收器的设计。
我兴高采烈地制作出试制品,马上安装到汽车上进行测试。但没想到,试制品在单独工作时接收信号的灵敏度很高,但发动机启动后,接收灵敏度骤降。
原因说起来有点专业,是因为我为了防止大带宽的接收信号失真,在设计中频放大级时,采用了错误的参差调谐电路。因此,在经过调制后,汽车的点火噪声超过了途中的放大器接收到的信号。因为太想在接收灵敏度方面超过竞争对手厂商的产品,所以我忘了要充分考虑发动机的点火噪声的影响,真是很难为情。
有了这次失败,我第一次意识到了EMC的重要性。切身了解到了噪声有多可怕、在汽车中配备电子产品有多可怕。
——请介绍一下学习EMC对策时的重点。
前野:需要具备电磁学的思维模式。很多人以为EMC的问题可以通过高频电路技术解决,我过去也是这样想。但实际上,从电磁学角度把握能深化理解,是通往解决的一条近路。
比如说,很多人认为电流只在电路的布线(图案)中流动。但在实际的电子产品中,电路之间存在“空间耦合”。这用电磁炉的机制来解释应该比较容易理解。在电磁感应的作用下,线圈彼此
- 电磁兼容EMC预测试与鉴定测试(09-25)
- EMC常见缩略语清单(03-19)
- EMC(电磁兼容性标准)认证流程图(02-11)
- 基于仿真软件的系统EMC设计(01-03)
- 关于照明光源频闪的问题(03-01)
- 基于仿真软件的系统EMC设计之工程实例(01-12)