用于HDMI接口的ESD保护技术
表4: TMDS传送信号的速度和‘系统’的TMDS时钟速度。 |
在这里作一个小结:HDMI运行的速度取决于发送器和接收器的能力,以及信号源的分辨率和颜色深度。每对TDMS数据线的速度最高是3.4 GHz。
在HDMI系统中增加ESD保护时在时基信号/性能方面的考虑
在HDMI 系统中增加ESD保护时,要考虑到增大了的电容和电感对高速TMDS数据线上所用器件的时基信号的影响。当各对TMDS数据线工作在3.4 GHz时,在连接线上增加一点点阻抗都会引起信号产生畸变,结果是:
.更难满足眼图中对上升时间和电平的要求
.对电路板设计的约朿增多
.系统的性能较差
为了减少时基信号对这些高速线路的影响,关于ESD保护器件,在技术上有关键性的四点要考虑到:
电容小
插入损失小
频率变化时电容保持稳定
做好电路板的设计,能在3.4 GHz运作,并有余量
1. 电容小
HDMI的时基信号的性能一般是通过眼图来测定的──眼图是分析时基信号的工具,它能够精确地显示时基信号和电平的误差。在眼图中间的灰色地带代表HDMI 1.3规范的要求。随着眼图中的线条接近灰色地带,允许的误差余量就越小。利用眼晴的宽度可以很好地测定数据线的时基稳定程度,而且可以看到是否存在误差。眼晴的高度表示信号的电平,或者振幅。
由于?HDMI的各对TMDS连接线路上的信号是差动的,很重要的一点是减少两条线之间的电容和信号对地的电容,从而保证信号的上升时间和下降时间在规定的范围之内。最好是,电容要尽量小,这样给设计人员留下的余地就更大。
泰科电子的PESD的电容是0.25 pF,工作在3.4 GHz时的眼图如图2所示。
图2:泰科电子的PESD的电容是0.25 pF,图中是它工作在3.4 GHz时的眼图。 |
在这个眼图中我们看到,当工作HDMI 1.3标准规定的3.4 GHz时,上升时间、下降时间和信号电平之间有一定余量。当工作较低的速度时,眼图“干凈”得多,余量增大,可以放宽设计的约朿。
图3:硅半导体ESD保护器在2.25 GHz时的眼图。 |
如图3所示,硅半导体ESD保护器件的电容大很多。虽然在2.25 GHz或者在1.48 GHz时,它的眼图符合1080p的36位和24位颜色深度的要求,但是,即使是在这样的速度下,它们不符合HDMI 1.3标准的要求。这样在设计电路板时会受到约朿。
2. 插入损失小
插入损失很重要,它衡量信号随着频率而产生的衰减。插入损失越大,器件和系统的频带就越窄,为了满足对眼图的要求,在设计方面,受到的限制就会增多。
图4:泰科电子的PESD保护器件(电容为0.25 pF)与电容为0.7 pF的半导体ESD保护器件的插入损失。 |
在图4中比较了泰科电子的PESD器件和普通的0.7 pF硅半导体ESD保护器件的插入损失。即使在频率为3.4 GHz──HDMI 1.3规定的最高速度时,泰科电子的PESD器件的插入损失也微乎其微。普通的0.7 pF硅半导体保护器件在2.25 GHz(颜色深度为36位的1080p格式的速度)时,明显地看到曲线下降,对HDMI TMDS信号电平的影响超过3 dB。在3.4 GHz全速时,分辨率更高、颜色深度深度,这时,用硅半导体进行ESD保护引起的信号衰减超过了6 dB,而信号电平则下降了超过一半。
3. 频率变化时电容保持稳定
ESD保护器件的电容随频率的变化也会影响HDMI接口的性能,也会对设计带来限制。在高速系统中,针对一定电容进行的电路设计,它的性能与所用的ESD保护技术有关。在制定HDMI电路保护方案时,这往往会迫使设计人员去使用复杂的SPICE模型和模拟的方法。
如果5所示,在频率变化时,直到3GHz,泰科电子的PESD器件的电容是稳定的。它的性能和电容量为0.25 pF(典型值)的电容器很相似,可以大量地简化设计。由于HDMI TMDS线路在频率改变时的变化取决于数据的型式,视频信号源的分辨率和颜色深度,设计人员如果知道ESD保护器件在频率变化很宽的范围内是稳定的,那么在进行设计时可以更加灵活,也有更多的空间。
图5:泰科电子的PESD器件的电容与频率(频率最高为3 GHz)的关系。 |
要考虑到电容在频率变化范围很宽时的稳定程度,而不是在一个频率或者狭窄的频率范围内的稳定程度,这点很重要。例如,硅半导体ESD保护器件通常是测量频率为1 MHz时的电容量,没有给出其他频率的电容量。因此,需要建立复杂的模型,确保在HDMI的广阔频率范围内运作时的性能达到要求。
4. 做好电路板的设计,能在3.4 GHz运作,并有余量
HDMI设备设计人员面临的挑战和开发消费电子设备时所面临的挑战是一样的──上市时间。在设计高频系统时,对于减轻风险、降低制作成本、缩短重新制作所需的时间,参考设计起着关键性的作用。对于在
- ESD常见问题解答1(04-02)
- ESD常见问题解答2(04-02)
- 带静电(ESD)抑制的薄膜共模滤波器(04-24)
- CMOS芯片的ESD保护电路设计(08-06)
- 电子产品的雷击浪涌与静电放电(ESD)防护方案(10-06)
- 穿戴式电子产品ESD解决方案(10-06)