微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > EMI中和传导相关共模及差模电流产生原理

EMI中和传导相关共模及差模电流产生原理

时间:08-22 来源:电子发烧友网工程师 点击:

点,D,F和G为热点。

去除Y电容无法有效的旁路共模电流,导到共模电流噪声过大,无法通过测试标准,设计的方法是改进变压器的结构。一般的法加利屏蔽方法不能使设备在无Y电容的情况下通过EMI的测试。由于MOSFET的漏极端的电压变化幅值大,主要针对这个部位进行设计。永远注意:电压的变化是产生差模及共模电流的主要原因,寄生电容是其流动的通道。

前面提到Cm和Cme及Cme和Ca也会产生共模电流,初级层间电容的电流一部分形成差模电流,有一部分也会形成共模电流,这也表明差模和共模电流可以相互的转换。

如果按图20结构安排冷点(蓝色点)和绕组,在没有Y电容时,基于电压改变的方向可以得到初级绕组与次级绕组及辅助绕组和次级绕组层间电容的电流的流动方向,初级绕组和辅助绕组的电流都流入次级绕组中。

调整冷点后如图21 所示,可以看到,初级绕组与次级绕组及辅助绕组和次级绕组层间电容的电流的流动方向相同,可以相互抵消一部分流入次级绕组的共模电流,从而减小总体的共模电流的大小。

辅助绕组和次级绕组的整流二极管放置在下端,从而改变电压变化的方向,同时注意冷点要尽量的靠近,这样因为两者间没有电压的变化,所以不会产生共模电流。

进一步,如果在内层及初级绕组和次级绕组间放置铜皮,铜皮的宽度小于或等于初级绕组的宽度,铜皮的中点由导线引线到冷点,如图22 所示,由于铜皮为冷点,与其接触的绕组和铜皮间电压的摆率降低,从而减小共模电流,同时将共模电流由铜皮旁路引入到冷点。注意铜皮的搭接处不能短路,用绝缘胶带隔开,内外层铜皮的方向要一致。

辅助绕组和次级绕组的共模电流可以由以下方法补偿:

① 加辅助屏蔽绕组

辅助屏蔽绕组绕制方向与次级绕组绕制方向保持一致,辅助屏蔽绕组与次级绕组的同名端连接到一起并连接到冷点,辅助屏蔽绕组的另一端浮空。由于它们的电压变化的方向相同,所以两者间没有电流流动。

②加外层的辅助屏蔽铜皮

辅助屏蔽铜皮的中点连接到到辅助绕组的中点。同样,基于电压的变化方向分析电流的流动方向,可以看到,两者之间的电流形成环流,相互补偿抵消,从而降低共模电流。

3 EMI 辐射干扰

3.1 电场和磁场发射

辐射干扰的测试在专门的屏蔽室中进行,待测试的设备放在转台上,天线分别放在水平和垂直的位置上下移动扫描,检测到信号送到接收机进行分析。

辐射干扰的测试包括电场发射和磁场发射,电场发射由du/dt产生,磁场发射由di/dt产生。注意:空间电容是电场发射的通道,共模电流可以产生相当大的电场发射。.

初级绕组电压变化的幅值大,对于电场发射起主导作用。磁芯也是一个电场发射源。在系统的PCB底层铺铜皮或额处加一块铜皮或单面板,可以有效的减小电场发射和共模电流。

高di/dt 的环路通过环路的寄生电感产生磁场发射,次级侧的电流变化幅值大,对于磁场发射的起主导作用。磁场发射形成的方向见图27所示,方向符合右手定则。

高di/dt环路的寄生电感随环路面积增大而增大,因此磁场发射对于PCB的设计非常关键。次级侧的电流环面积要尽量的小,布线要尽量的短粗。

变压器的杂散磁场也是一个磁场发射源,其主要由变压器的气隙产生。E型磁芯在两侧开气隙时杂散磁场大,在中心柱开气隙时杂散的磁场小。在变压器的最外面包裹铜皮,铜皮两端短接,用导线连接到冷点,可以减小杂散的磁场。因为杂散磁场在铜皮中产生涡流,涡流反过来产生磁场阻碍变压器杂散磁通的外泄。输出棒状及鼓状的差模电感如同一个天线产生大的磁场发射。使用前述的相关的缓冲吸引电路可以减小相应的磁场发射。

注意:手机充电器要带长的输出线(1.8m)进行测试,长的输出导线也如同一个天线,并将共模电流放大,从而形成较大的共模电场辐射,这种辐射只有通过上面变压器的结构进行抑止,在没有频率拌动或频率调制的系统中,还得加输出共模电感。才能有效的减小在30~50M间的电场发射。

需要说明的是:传导和辐射及差模和共模电流间可以相互转换,具体的理论相当复杂,远远超出作者的知识范围,特表歉意。

3.2 共模电感设计

共模电感的两个绕组分别与输出的二根线串联,注意到当输出电流在每个绕组流过时,它们在磁芯中形成的磁通方向是相反的,可以相互的抵消,平衡的条件下磁芯中的磁通为0,因此共模电感不会因为输出的负载电流产生饱和。当同方向的共模电流在两个绕组中流过时,其在磁芯中形成的磁通方向是相同,阻抗增加,从而衰减共模电流信号。

设计过

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top