一款便利的电路板级能量监视器
无论你想测量 30A 轨还是 6A 轨,一种更简单的方式以替代 LTC2946 的器件就是 LTC2947 能量监视器,如图 2 所示,该器件集成了一个 300µ? 检测电阻器,消除了使用外部检测电阻器测量大电流的诸多难题,包括功耗、准确度、温度漂移和尺寸问题。当测量 30A 满标度电流时,LTC2947 集成的检测电阻器上之压降仅为 10mV,从而导致仅约 1/4 W 的功耗,或者测量 6A 轨时功耗为 10mW。除了低功耗,由于其仅为 -9mA (2.7µV) 的低失调,LTC2947 还提供很大的动态范围。经过温度补偿的能量读数确保在室温时准确度为 1.2%,在 -40°C 至 85°C 的整个温度范围内,准确度为 1.5%。此外, LTC2947 采用 4mm x 6mm 32 引脚 QFN 封装,从而非常适用空间受限设计。
图 2:集成了检测电阻器的 LTC2947 功率 / 能量监视器
>>>> 能量测量
LTC2947 测量很多参数,包括电流、电压、功率、电荷、能量、温度和时间。参见图 3 所示方框图。LTC2947 采用 3 个 ΔΣ ADC,其中两个测量电压和电流,第三个 ADC 计算功率。在连续模式,ADC 连续并同时测量电流、电压、功率和温度,且每隔 100ms 更新一次相应的内部寄存器。单稳态模式触发一组循环测量。当无需进行测量时,LTC2947 可进入停机模式,这时总电流消耗降至不到 10µA,或进入空闲模式,这时所有电路保持有效,并准备进入连续、单稳态或停机模式。
图 3:LTC2947 方框图
LTC2947 1.3% 的能量测量准确度确实得益于其计算功率的独特方法。与现有功率监视器以一个 ADC 的转换速率倍增功率不同,LTC2947 执行了一种独特的测量方案,可实现最大的功率测量准确度。LTC2947 中的 3 个 ADC 各针对一项特定的任务量身打造。第一个 ADC 负责测量 -30A 至 30A 的电流,并运用连续失调校准确保以相同的权重对所有的输入采样进行平均处理,并且不会漏失任何采样。
第二个 ADC 在第一个 ADC 测量电流的同时测量内部温度和差分电压。温度被报告给主机,并在内部被 LTC2947 用来补偿内部电流检测电阻器的温度漂移,从而实现更加准确的电流测量。由于 LTC2947 具有 0V 至 15V 的轨至轨工作范围,因此它适用于多种类型的系统。不仅额定绝对最大值为 20V 的电源和检测引脚为 12V 应用提供了很大的储备空间,而且零伏 (0V) 检测监视能力在监视短路或断电情况下的电流水平方面同样是十分有用。0V 电压下的故障电流水平能够立即指示电源或负载是否已经损坏,并不需要增加额外的电路。
测量功率和能量时,LTC2947 的 "秘密武器" 确实藏在第三个 ADC 中,在进行任何转换平均之前,这个 ADC 在 5MHz 采样频率时乘以电流和电压。你知道,在典型的功率或能量监视 IC 中,用一个或两个 ADC 测量电流和电压,结果相乘以得到功率。然而,因为通常使用 ΔΣ ADC,所以用来相乘的值是平均电流值和平均电压值,这总是会导致一些功率误差。LTC2947 并未进行平均值的乘法运算,而是把电流和电压的原始 (在抽取滤波器之前) 读数相乘,然后转换结果。这就使 LTC2947 能够在电流和电压变化高达 50kHz 时,准确地测量功率,这种变化远远超出其转换频率范围。例如,如果从一个阻抗极大的电池吸取功率,就有可能发生这种情况。
图 4 显示了一个在 20µs 时间间隔内改变相位的电流和电压波形的例子,还显示了典型功率或能量监视 IC 以及 LTC2947 是怎样以不同的方式计算功率的。在典型功率或能量监视 IC 中,功率是由平均电流乘以平均电压得出的。在 LTC2947 中,功率是通过采样 (在这个例子中,使用了两个采样) 相乘之后再平均得出的。LTC2947 计算出的 0.218W 功率更接近实际功率,而典型功率或能量监视 IC 得出的 0.234W 功率有 7.3% 的误差。LTC2947 避免了这种误差,并在信号直至50kHz 时都保持准确。
图 4:典型功率计算与 LTC2947 功率计算举例
由于电荷是随着时间推移所消耗的电流量,而能量则是随着时间推移产生的用电量,因此 LTC2947 对电流和功率进行时间积分,以计算流至负载或从负载流出的电荷和能量。另外,该器件还记录用于积分运算的总累积时间,这里,积分时基可以由 1% 准确度的内部时钟或一个 100kHz 至 25MHz 的外部时基提供。在电荷仅仅是准确地确定电池充电状态 (SOC) 的诸多前提条件之一的电池应用中,电荷数据会特别有用。此外,能量数据在日常应用中还被证明是更加常用的,因为它可实现动态加载,而不是依赖静态功率读数以执行操作。
>>>> 数字功能的便利
- 适用于工业能源采集的技术 (08-10)
- 到处都可以使用的“绿色电源”(09-18)
- 电动汽车的重生之路还有多长?(10-15)
- 一种易于建立的高性能、高可靠性隔离式电源(10-31)
- 新颖的均流 IC 可轻松平衡两个电源(11-12)
- 新型汽车设计需要具超低 Iq 的高压同步降压型转换器(11-07)