链表结点的数据结构该如何定义
时需要操作各个结点的p_next指针。而将数据和p_next分离的目的就是使各自的功能职责分离,链表只需要关心p_next的处理,用户只关心数据的处理。因此,对于用户来说,链表结点的定义就是一个"黑盒子",只能通过链表提供的接口访问链表,不应该访问链表结点的具体成员。
为了完成头结点的初始赋值,应该提供一个初始化函数,其本质上就是将头结点中的p_next成员设置为NULL。链表初始化函数原型为:
int slist_init (slist_node_t *p_head);
由于头结点的类型与其它普通结点的类型一样,因此很容易让用户误以为,这是初始化所有结点的函数。实际上,头结点与普通结点的含义是不一样的,由于只要获取头结点就可以遍历整个链表,因此头结点往往是被链表的拥有者持有,而普通结点仅仅代表单一的一个结点。为了避免用户将头结点和其它结点混淆,需要再定义一个头结点类型(slist.h):
typedef slist_node_t slist_head_t;
基于此,将链表初始化函数原型(slist.h)修改为:
int slist_init (slist_head_t *p_head);
其中,p_head指向待初始化的链表头结点,slist_init()函数的实现详见程序清单3.15。
程序清单3.15 链表初始化函数
1 int slist_init (slist_head_t *p_head)
2 {
3 if (p_head == NULL){
4 return -1;
5 }
6 p_head -> p_next = NULL;
7 return 0;
8 }
在向链表添加结点前,需要初始化头结点。即:
slist_node_t head;
slist_init(&head);
由于重新定义了头结点的类型,因此添加结点的函数原型也应该进行相应的修改。即:
int slist_add_tail (slist_head_t *p_head, slist_node_t *p_node);
其中,p_head指向链表头结点,p_node为新增的结点,slist_add_tail()函数的实现详见程序清单3.16。
程序清单3.16 新增结点范例程序
1 int slist_add_tail (slist_head_t *p_head, slist_node_t *p_node)
2 {
3 slist_node_t *p_tmp;
4
5 if ((p_head == NULL) || (p_node == NULL)){
6 return -1;
7 }
8 p_tmp = p_head;
9 while (p_tmp -> p_next != NULL){
10 p_tmp = p_tmp -> p_next;
11 }
12 p_tmp -> p_next = p_node;
13 p_node -> p_next = NULL;
14 return 0;
15 }
同理,当前链表的遍历采用的还是直接访问结点成员的方式,其核心代码如下:
1 slist_node_t *p_tmp = head.p_next;
2 while (p_tmp != NULL){
3 printf("%d ", ((slist_int_t *)p_tmp)->data);
4 p_tmp = p_tmp->p_next;
5 }
这里主要对链表作了三个操作:(1)得到第一个用户结点;(2)得到当前结点的下一个结点;(3)判断链表是否结束,与结束标记(NULL)比较。
基于此,将分别提供三个对应的接口来实现这些功能,避免用户直接访问结点成员。它们的函数原型为(slist.h):
slist_node_t *slist_begin_get (slist_head_t *p_head); // 获取开始位置,第一个用户结点
- 电源软启动的实用设计技巧(07-16)
- 周立功:动态分布内存——malloc()函数与calloc()函数(07-22)
- 周立功“程序设计与数据结构”:深度解剖动态分布内存的free()函数与realloc()函数(07-25)
- 周立功教你学程序设计技术:做好软件模块的分层设计,回调函数要这样写(07-30)
- 周立功教你学C语言编程:教你数组是如何保存指针的(07-31)
- 算法的泛化问题,这些坑你可能都经历过!|周立功教你学软件设计(08-01)
