不只是考虑导通压降、限流值!避免二极管过载损坏,应该如何理解PCM值?
平时在选用二极管时,多数人会考虑导通压降、限流值等,往往会忽略一个很重要的现象:晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。那么应该如何理解PCM值?
二极管作为一种基础电子元器件,所有工程师都知道其具有单向导电性。根据半导体材料分类,可分为硅二极管和锗二极管;根据据应用场合分类,可分为整流二极管、检波二极管、开关二极管和稳压二极管。不论怎么分,二极管有一个参数十分重要,会直接影响到晶体管是否会因过载损坏。
耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。是某一时刻电网元件或者全网有功输入总功率与有功输出总功率的差值。在线性条件下,导通的耗散功率计算比较简单,PD=I2R,或者PD=U2/R;而在开关状态下,计算相对比较复杂。
二极管的耗散功率与允许的节温有关,硅二极管允许的最大节温是150℃,而锗允许最大节温85℃。半导体工作温度是有限的,当实际的功率增大是,其节温也将变大,当节温达到150℃是,此时的功率就是最大的耗散功率。当然,耗散功率与封装大小也有一定的关系,通常封装大点的器件,其最大耗散功率也相对大点,最常见的就是大功率器件拥有大体积,大面积的散热金属面。
一个具体型号的二极管其耗散功率与测试条件有关,比如测试环境温度和散热条件。通常情况下,测试出来的最大耗散功率是在25℃下。随着环境温度的升高,其最大的耗散功率将减少,因为该条件下的导热温差变小,比如说在25℃下,某二极管耗散功率能达到1W,在75℃情况下,耗散功率可能变成0.4W。允许最大耗散功率与散热条件有关,散热条件越好,耗散功率越高,在同一环境温度下,耗散功率为1W,加了散热片之后,耗散功率可能变为1.7W。
表征散热措施的一个参数是热阻。热阻反映阻止热量传递能力的综合参量。热阻跟电子学里的电阻类似,都是反映"阻止能力"大小的参考量。热阻越小,传热能力越强;反之,热阻越大,传热能力越小。从类比的角度来看,热量相当于电流,温差相当于电压,热阻相当于电阻。其中,热阻Rja:芯片的热源结到周围冷却空气的总热阻,其单位是℃/W,表示在1W下,导热两端的温差。
以1N4448HWS为例,查看其手机手册,可知其热特性如下:
从中可知,其耗散功率PD=200mW,热阻为625℃/W,其中这两个量是环境温度25℃,焊在FR-4材质 PCB条件下测试的,如手册说明Part mounted on FR-4 PC board with recommended layout 。
耗散功率与环境温度有关,温度越大,耗散功率越小,1N4448HWS耗散功率与环境温度关系如下:
在0~25℃是,耗散功率恒为200mW,在25~150℃时,线性递减,到达150℃,耗散功率为0,在这个温度,硅管已经不能工作了。从这个表中,可以计算出热阻,其线性部分斜率倒数:
|1/k|=Rja=(150-25)/0.2=625℃/W
根据这个表,可得:
PD=-1/625(TA-25)+0.2,(TA-≥25)
根据这个公式,可计算出不同环境温度下最大的耗散功率。
在设计过程中,人们更关注器件工作时的温度,以确保在安全的工作范围。以1N4448HWS为例,在环境温度为25℃情况下,实际功率为100mW时,其温度为25+625*0.1=87.5℃,其能正常工作;当实际功率为200mW时,其温度为25+625*0.2=150℃,这时候已经达到节温的最大温度了,比较危险,应当避免。
二极管的传热方面,主要考虑PD和热阻Rja,前者是最大耗散功率,实际工作不能超过这个数值,后者是传热阻力参量,放映不同二极管的传热能力。在使用二极管时,不但要考虑正向电流、反向耐压和开关时间,还应该考虑到耗散功率。
ZLG致远电子结合数十年的编程器&仿真器设计经验,充分考虑各元器件的安全保护和性能最大化,推出了P800系列编程器,可覆盖绝大部分芯片编程需求,包括各类MCU、FPGA以及大容量Flash等芯片,并且提供完善的自动化控制协议,可快速实现高效的智能化生产。
- 太阳能逆变器设计方案(06-09)
- 基准电压源设计及选用介绍(10-27)
- 肖特基二极管在电源管理中的应用分析(06-27)
- 整流二极管在简化AC/DC转换器中的EMI滤波器电路上的应用(03-21)
- 理想二极管和热插拔控制器实现电源冗余并隔离故障(04-08)
- 如何选择汽车电力线极性保护二极管?(02-17)