微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 磁性接近开关工作原理

磁性接近开关工作原理

时间:02-12 来源:OFweek 传感器网 点击:

准位置到检测面的空间距离。额定动作距离指霍尔开关动作距离的标称值。

  ⑥ 回差距离:动作距离与复位距离之间的绝对值。

  3.3 应用实例

  由于转速信号是以脉冲形式出现的,当被测磁性物体磁场强度达到 25 毫特斯拉以上时,其输出是标准的TTL电平。利用计算机的智能型控制、运算功能,组成的转速表既简单又精确。如用 3020 型霍尔式接近开关,单片机用 8031(它的晶振为 6MHz,经 12 分频后为 0.5MHz),则其测量的最大转速为 0.5MHz,而最小测量转速可无限低。

  3.4 注意事项

  ① 直流型霍尔接近开关产品所使用的直流电压为 3~28V,其典型的应用范围一般采用 5~24V,过高的电压会引起其内部霍尔元器件参数随电压升高而变化的不稳定性,而过低的电压容易让外界的温度变化影响磁场强度特性,从而引起电路误动作。

  ② 当使用霍尔接近开关驱动感性负载时,请在负载两端并接入续流型二极管,否则会因感性负载长期动作时的瞬态高压脉冲影响霍尔开关的使用寿命。

  ③ 一般霍尔接近开关产品用 SMD 工艺生产制造而成,并经严格的测试合格后才出厂。在一般情况下使用是不会出现损坏现象的,但为了防止意外性事件发生,用户在接通电源前应检查接线是否正确,并核定其电压是否为额定值。

  4 .磁性接近开关

  

  4.1 工作原理

  磁性接近开关能以细小的开关体积达到最大的检测距离。它能检测磁性物体(一般为永久磁铁),然后产生触发开关信号输出。由于磁场能通过很多非磁性物,所以此触发过程并不一定需要把目标物体直接靠近磁性接近开关的感应面,而是通过磁性导体(如铁)把磁场传送至远距离,例如,信号能够通过高温的地方传送到磁性接近开关而产生触发动作信号。 它的工作原理与电感式接近开关类似,其内部包含一个 LC 振荡器、一个信号触发器和一个开关放大器,还有一个非晶体化的、高穿透率的磁性软玻璃金属铁芯,该铁芯造成涡流损耗使振荡电路产生衰减,如果把它放置在一个磁场范围内(例如,永久磁铁附近),此时正在影响振荡电路衰减的涡流损耗会减少,振荡电路不再衰减。因此,磁性接近开关的消耗功率由于永久磁铁的接近而增加,信号触发器被启动产生输出信号。它有广泛的应用,如:可以通过塑胶容器或导管来对物体进行检测;高温环境的物体检测;物料的分辨系统;用磁石辨认代码等。

  4.2 特点

  (1)优点

  ① 可以整体安装在金属中。

  ② 对并排安装没有任何要求。

  ③ 顶部(传感面)可以由金属制成。

  ④ 价格低廉,结构简单。

  ⑤ 具有大的感应范围和高的开关频率。

  (2) 缺点

  ① 动作距离受检测体(一般为磁铁或磁钢)的磁场强度影响较大。

  ② 检测体的接近方向会影响动作距离的大小(径向接近是轴向接近时动作距离的一半)。

  ③ 径向接近时有可能会出现两个工作点。

  ④ 检测体在固定时不允许用铁氧体或螺丝钉,只能用非铁质材料。

  5.传感器技术发展趋势

  随着科学技术的发展,各国对传感技术在信息社会的作用有了新的认识,认为传感器技术是信息技术的关键之一。传感器技术发展趋势之一是开发新材料、新工艺和开发新型传感器;其二是实现传感器的多功能、高精度、集成化和智能化。

  5.1新材料开发

  传感器材料是传感器技术的重要基础,由于材料科学的进步,使传感器技术越来越成熟,传感器种类越来越多。除了早期使用的材料, 如:半导体材料、陶瓷材料以外,光导纤维以及超导材料的发展,为传感器技术发展提供物质基础。未来将会有更新式材料开发出来,如纳米材料等。最近,美国 NRC公司已开发纳米ZrO2气体传感器。在控制汽车尾气的排放效果很好,应用前景广阔。采用纳米材料制作的传感器具有庞大的界面,提供大量的气体通道,导通电阻很小,有利于传感器向微型化发展。

  5.2 集成化技术

  随着LSI技术发展和半导体细加工技术的进步,传感器也逐渐采用集成化技术,实现高性能化和小型化。集成温度传感器、集成压力传感器等早已被使用,今后将有更多集成传感器被开发出来。

  5.3 多功能集成传感器

  在一块集成传感器上可以同时测量多个被测量称为多功能集成传感器。80年代末期,日本丰田研究所报导了可以检测Na+,K+和H+多离子传感器。最近国内已经研制硅压阻式复合传感器,可以同时测量温度和压力等。

  5.4 智能化传感器

智能化传感器是一种带微处理器的传感器,兼有检测判断和信息处理功能,例如美国霍尼尔公司的ST-3000型传感器是一种能够进行检测和信号处理的智能传感器,具有微处理器和存贮器功能,可测差压、静

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top