微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 基于磁性材料的EMI滤波器设计

基于磁性材料的EMI滤波器设计

时间:08-30 来源:中电网 点击:

0 引言

开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高,效率高,功率密度高,可靠性高。然而,由于其开关器件工作在高 频通断状态,高频的快速瞬变过程虽然能完成正常的能源传递,但却是一种电磁骚扰源。它产生的EMI信号有很宽的频率范围,又有较高的幅度,因而会严重影响 其他电子设备的正常工作。

1 EMI滤波电路

开关电源的开关频率及其谐波的主要表现是电源线上的干扰,称之为传导干扰。 传导干扰分为共模干扰和差模干扰。共模干扰是由载流导体与大地之间的电位差产生的,其特点是两条线上的干扰信号电压是同电位同相的;而差模干扰则是由载流 导体之间的电位差产生的,其特点是两条线上的干扰信号电位相同,但相位相反。事实上,针对不同的干扰信号,EMI滤波电路也分为抗共模干扰滤波电路和抗差 模干扰滤波电路,图1所示是其滤波电路。

\

图 l中,LC1、LC2、Cy1、Cy2构成共模滤波电路。LC1和LC2为共模滤波电感,而Ld1、Ld2、Cx1、Cx2则可构成差模滤波电路,Ld1 和Ld2为差模滤波电感。在这个滤波电路中,共模滤波电感和差模滤波电感起着举足轻重的作用,其性能优劣直接决定EMI滤波器的成败,而共模滤波电感和差 模滤波电感的性能好坏主要是由磁芯的特性所决定,所以,分析EMI滤波器中所用的磁芯特性,其意义相当重大。

一般而言,磁性材料根据其特 性及应用可分为软磁、硬磁、压磁等,其中软磁应用最为广泛,几乎所有感性器件(电感、变压器、传感器等)都离不开软磁材料,目前,滤波电感应用最多的磁芯 也是软磁材料。磁性材料的选择除了要正确选择其基本的磁参数(如Bs、μi、Tc)外,还要仔细选定它们的电特性(如电阻率、频宽、阻抗等)。根据EMI 滤波器的特点,共模滤波电感和差模滤波电感的磁芯选择应遵守以下几点:

第一、初始磁导率要高(μi>2000);

第二、要有低矫顽磁力Hc,以减小磁滞损耗;

第三、电阻率ρ高,以减小高频下的涡流损耗;

第四、ωc要高,适当的截止频率可以展宽频段;

第五、Tc要高,以适应各类工作环境;

第六、应具有某一特定的损耗频率响应曲线,这样,在需要衰减EMI信号的频段内其损耗较大,因而可以把EMI衰减到最低电平,而在需要传输信号的频段内损耗应较小,这样,信号容易通过。

2 共模电感磁芯

EMI 滤波器需要抑制的频率范围通常在10kHz~50 MHz之间。为了使共模滤波电路在此频率范围内都能提供适当的衰减,磁芯在此频率范围内的阻抗必须都要很高。共模磁芯的总阻抗(Zs)由串联感性阻抗 (Xs)和串联阻性阻抗(Rs)两部分组成。在低频部分,磁芯阻抗主要以感性阻抗为主,随着频率的增加,阻性阻抗逐步增加,渐渐起主要作用,图2所示是频 率与阻抗的关系曲线。图中,两种阻抗的结合,可使磁芯在此全频范围内提供合适的总阻抗(Zs)。

\

共 模电感线圈如图l中Lcl,Lc2是绕在一只磁芯上的两组独立的线圈,所绕圈数相同,绕向相反。这样,当EMI滤波器接入电路后,两组线圈产生的磁通在磁 芯中将相互抵消,故不会使磁芯饱和。对于干扰信号而言,共模磁芯一般工作在低磁场区域,所以,共模滤波电感选用的磁性材料要求具有较高的初始磁导率μi。 如果只针对滤波器的插入损耗这一指标,则初始磁导率μi越高,滤波电路呈现的感抗就越大,所得到的插入损耗指标就越好。但在整个电路中,还要综合考虑磁性 材料在电路中的其它特性,如频率阻抗特性、居里温度、磁材的形状等等。μi值不同的各种磁性材料,在不同频率下的阻抗特性也不一样,故要根据所需要的频率 范围来选取合适μi值的磁性材料。图3所示是不同类型的高μi软磁材料在同样条件下的频率与阻抗关系曲线,该曲线反映出电感磁芯的插入损耗变化趋势。其它 的性能参数(如电感值、体电阻等)如表1所列。

\

在 图3中,曲线IV是外国专门用于抗共模干扰用的电感磁芯(Mn-Zn铁氧体PC40)所呈现的阻抗特性,曲线Ⅲ是国产铁氧体(R4 KB)的阻抗特性。在低频段(100 Hz~10 kHz),由于材料本身电阻率高,交流等效电阻小,电路中感抗起了主要作用,说明铁氧体材料在这个频段内对干扰信号的抑制作用较小。超微晶(曲线Ⅱ)和金 属磁性材料薄膜合金1J851(曲线I)材料由于材料本身的电阻率比较低,随频率增加时,其涡流损耗也增加,其等效阻抗Z比铁氧体大得多。在10~100 kHz的频段内,四种材料的Z都在增加,只是铁氧体材料的变化斜率要比超微晶(曲线Ⅱ)和金属磁性材料薄膜合金1J851更陡,说明在这一频段内,它们对 干扰信号的抑制都在不断地增强。

当频率在100 kHz~1 MHz频段时,铁氧体材料Z急增,而金属磁性材料和超微晶仍然平稳上升,在1 MHzl/寸,进口铁氧体达到峰值,Z最大,说明在这一频段内,铁氧体材料对干扰噪声的抑制效果最好。所以,制造共模滤波器时所选用的电感材料一定要根据 电路要求的抑制频段范围来选择,这是非常重要的。同时,从表1与图3所示曲线对比可以看出,并不是电感量越高越好,而应考虑它的电参数,更不能简单用增加 线圈匝数的方法来增加电感,因为这样会增加高频寄生电容。

目前,在大多数情况下,共模磁芯材料一般选择使用铁氧体。铁氧体主要分为两种: 镍锌铁氧体和锰锌铁氧体。镍锌材料磁芯的特性是其初始磁导率较低,但是它能在很高的频率时维持其磁导率不变。因为镍锌材料磁芯的初始磁导率较低,所以,它 在低频时不能产生足够高的阻抗,故对低频<5 MHz时,干扰信号的抑制作用较小,因而主要使用在干扰信号在高频(大于10 MHz)的滤波器中。锰锌材料磁芯在低频(50 MHz下,特别是10 MHz以下)时有很高的磁导率,有些磁芯的磁导率能超过5000,故适合使用在10 kHz~50 MHz的EMI滤波器中。当系统中需要EMI滤波器抑制的干扰信号频率在10 MHz以内时,可选用的共模磁芯材料主要是锰锌材料的铁氧体磁芯。

3 差模电感磁芯

由 于EMI滤波器的输出电流较大,如果使用太高磁导率的材料,将很容易导致磁饱和,所以,为了适应差模抗干扰滤波器的电感磁芯需要,应选用有较高饱和磁感应 强度的磁芯。为提高差模电感的饱和磁感应强度,可以选用磁性材料本身就具有很高饱和磁感应强度的磁芯(如复合磁粉芯等);也可以用在磁芯开气隙的方法来降 低磁导率,以提高磁芯的抗饱和能力(如铁氧体PC40磁芯等)。然而,在磁芯开气隙处,除了有很强的交变漏磁场会引起新的辐射干扰外,由于磁致伸缩(磁致 伸缩效应是指磁化使磁材料产生机械应变的效应),还会在气隙处产生新的噪声和环境污染,因此,在使用时要特别注意。

目前较为理想的差模滤 波电感材料是复合磁粉芯。它是将金属软磁粉末经绝缘包裹压制退火而成,相当于把一集中的气隙分散成微小孔穴均匀分布在磁芯中,这样不但材料的抗饱和强度会 增加,而且磁芯的电阻率也会比原来增加几个数量级且各向同极性,因此也就改善了金属磁性材料不能在高频下使用的缺陷。这也是国外新型差模滤波电感都采用金 属磁粉芯,而越来越少使用开口铁氧体磁芯的原因。

\

图 4所示是Magnetic公司的SF30与SF70金属磁粉芯及55930镍铁磁粉芯的频率一阻抗变化曲线。不同磁性能的磁芯,其阻抗与频率变化是不一样 的。由图4可以看出,铁磁粉芯SF70和镍铁磁粉芯55930在干扰频率小于2 kHz时,其阻抗很小且基本不变,表示对这一频段的干扰信号衰减很小。铁磁粉芯SF30在小于60 kHz时,对干扰信号的衰减也很小,但到2 MHz附近的吸收则迅速增强,在接近10 MHz时吸收最强,而SF70在100kHz以后曲线的斜率变化不大。由此可见,不同性能的材料对干扰信号的吸收频段也不一样。因此在实际设计中,必须根 据实际所需抑制的干扰信号频段进行磁芯材料的选择。

4 磁性材料的温度特性

选择电感的磁芯材料不但要考虑其磁特性,还要 考虑其温度特性,包括高低温下的磁性变化和磁性材料的居里温度特性。磁芯由铁磁性(亚铁磁性或反铁磁性)转变成顺磁性的温度称为居里温度。在图5所示的 μ-T曲线上,80%μmax与20%μmax连线与μ=1的交叉点相对应的温度,即为居里温度Tc。

\

由 于磁性材料到了居里温度点后就失去磁性。因而此时将会对电路产生巨大的损害,严重时会烧毁电路,所以磁性材料的工作温度必须在居里温度之下。例如:在一些 产品中,其工作温度为-55~+125℃。正常工作时,由于电路的损耗会导致发热,从而使磁芯内部的温度升高,此时磁芯的最高温度将可能达到140℃,所 以,选择的磁性材料的居里温度必须高于这个温度点,并要进行降额设计,以留有足够的余量。通常而言,磁性材料的μi值越高,则居里温度越低;反之μi越 低,居里温度越高,所以,要综合考虑μi值和居里温度来选择磁性材料。

中小功率的EMI滤波器产品中选用最多的磁芯材料是日本TDK公司 的PC40 (它是目前业界广泛使用的较好的材料之一),它的初始磁导μi随温度的变化曲线如图6所示。从图中可看出,温度变化对μi的影响是很大的,磁芯温度在 90~150℃的区间内,有一段平坦区,这时它的μi大约在4100左右;当温度低于90℃后,μi值会随着温度的降低而逐渐减小,到0℃时,μi值只有 2000左右,进到负温区后,μi值还会进一步减小;而当温度高于150℃后,μi值则会随着温度的升高而增加,当达到240℃时,μ的最大值为5600 左右;从240℃开始,μi值又渐渐减小,当温度达到居里温度点250℃时,材料失去磁性。



5 结束语

对 于许多类型的电子系统,EMI是个较为棘手的问题。随着开关电源的不断小型化和高频化,相应的EMI滤波器也在不断改进和发展,以适应开关电源不断发展的 需要。EMI滤波器的改进和发展需要磁性材料的支撑,相信磁性材料的性能改进,一定会对EMI滤波器乃至整机系统实现较好的电磁兼容环境带来更大的帮助。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top