微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 智能车磁导航中的信号调理电路设计

智能车磁导航中的信号调理电路设计

时间:08-28 来源:END 点击:

理电路的任务和工作条件是:1)带宽和增益,对20 kHz、毫伏级的信号放大约1 000倍,且动态范围较大;2)供电电源,车载电池供电,使用单电源放大电路,电池额定电压为7.2 V;3)信号转换,对放大后的信号进行幅度检波。

  使用分立元件搭建电路虽然能实现该功能,但电路复杂,调试不方便,并且电路性能会随电池电压的波动而变化。常见的通用运放如OP07、LM324、 LM358等,对于20 kHz信号无法满足带宽和增益的要求,同时,其输出摆幅较小。近年来出现的一些新的集成运算放大器能很好地承担上述任务。如OPA228系列运放、 MAX445l系列运放。特别是MAX4451双运放,-3 dB带宽达210 MHz,可以在+4.5~+11 V单电源条件下工作,输出摆幅大,具有轨到轨输出,开环增益大于50 dB,使用两级放大外加负反馈完全能胜任。实际电路如图1所示。

\

  智能车是靠电池驱动的,随着工作时间持续,电池电压必然下降。由于运放MAX4451的共模抑制比极高,典型值CMRR=95 dB,所以在单电源条件下可正常工作,并且,电池电压的波动基本不影响运放的工作性能。
图1中L1是检测线圈。R1、R2分压为运放提供输入偏置电压,适当调节R2可改变放大器的输入偏置电压。由于第2级放大电路的增益设定为 (R5/R4)=30倍,可根据检测线圈L1输出感应电动势的大小,适当选择R3改变第1级的放大倍数,从而使总增益满足要求。引入R7是为了降低第1级放大电路的直流增益,从而提高静态工作点的稳定性。但R7的引入降低了第1级电路的交流放大能力,故接人C4=0.47μF实现交流旁路。VD1、R6和 C3构成幅度检波电路,VD4选择压降较小的高频锗二极管,检波电路的时间常数τ=R6C3一般选择为激磁电流(f=20 kHz)周期的3~5倍,C3的容量越大,输出到单片机A/D端的直流电压中的20 kHz波纹越小,但C3的容量过大将导致电路响应时间长,对智能车与赛道的偏离反应迟钝.C3的实际取值应在此估算的基础上通过测试确定。

  此外,按常理,R1=R2分压为运放提供输入偏置应该为电源电压VCC的一半,约3.6 V。但由于VD1、R6和C3构成的是正半周峰值包络检波电路,检测线圈L1的感应电动势越大,检波电路输出的直流电位越高。如前所述,线圈输出的感应电动势受多种因素影响变化范围较大,为增大此电路的输出摆幅,选择R1=20 kΩ,R2=5.1kΩ,使运放同相端的输入偏置电压降低到约1.8 V,以降低检波电路输出端的初始直流电位,增大电路的动态范围。

  4 结论

  上述电路能满足磁导航智能车对信号检测的要求。电路调节方法:静态条件下,调节R2使检波电路输出电压约为1V;动态条件下,当竖直放置的检测线圈距离赛道载流线最近,且激磁电流为150 mA时,调节R3使检波电路输出电压接近但不超过5 V,以满足单片机A/D端采集电压的要求。

  由于检测线圈输出的感应电动势会随着线圈与赛道载流线之间距离增大而迅速减小,为提高赛道检测的灵敏度和准确性.使用一个检测线圈是不行的。实际上,可以在小车的前端平行放置多个竖直检测线圈,每个检测线圈都配接相同的信号调理电路,智能车上的单片机必须快速巡回采集每个调理电路的输出电压,找出输出电压最大值,就可判断出的赛道载流线就在该路检测线圈的正下方。

  单片机巡回采集各个调理电路的输出电压时,只需要比较哪一路输出电压最大,就能实现寻道,并不关心具体电压的数值。这种"找最大"方法的优点是:信号调理电路的输出电压与赛道激磁频率((20±2)kHz)、激磁电流(50~150 mA)有关,但激磁频率和激磁电流对各路检测电压的影响是相同的,上述"找最大"方法始终能够根据输出电压的相对最大值判断出赛道位置,这就使得寻道检测电路对赛道有很好的适应能力。

  多个检测线圈也可以采用水平放置的方式,配接电路相同。但不难看出,若检测线圈水平放置在载流导线正上方时,感应电动势为零;检测线圈位于载流导线上方的一侧时,感应电动势较大;检测线圈位于载流导线上方的一侧,且偏离较远时,感应电动势减小。此时,智能车上的单片机应该快速巡回采集每个调理电路的输出电压,找出输出电压最小值,就可判断出赛道载流线就在该路检测线圈的正下方。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top