功率因数
率因数
我们现在就来看一下真实世界里的功率因数情况。正因为其中的视在功率是很难定义的,也是很难测定的,所以就出现了采用不同的仪器测出的结果不一样。举例来说,有一个11瓦的球泡灯,其中采用了桥式整流器加上10uF电解电容,采用三种仪器测量,测出的结果如下:
三种仪器测试误差高达8%以上,完全不像测电压测电流测功率那么精准!
这么大的误差,假如要求PF一定要大于0.5,那么只要采用同惠的功率因数计,但是假如检测方一定要坚持采用远方的测试数据那就不合格了。这样的结果简直是使人们无所适从
想来想去应该采用电工系统里经官方认证的最经典的Cosφ计来测,其结果才最具有权威性。而且Cosφ测试仪不像数字测试仪,还能够得出正负号的。
指针式功率因数计
仔细搜索一下可以发现正式电力系统采用的功率因数计大多数是指针式的,这种功率因数计也称为Cosφ计。有单相的,也有三相的。这种电动式的动圈式功率因数表的转动线圈改为二个垂直的动圈。电表的磁场由负载电路中的电流产生。垂直的动圈分别为A和B,A线圈串接电阻后与负载线路并联,B线圈串接电感后与负载线路并联,因此B线圈的电流会较A线圈落后。在功率因数为1时,A线圈的电流会和负载电流同相,因此A线圈会产生最大的力矩,使功率因数表的指针指向1.0的刻度。若功率因数为0时,B线圈的电流会和负载电流同相,因此B线圈会产生力矩,使功率因数表的指针指向0的位置。若功率因数界于0和1之间,会依二个线圈产生力矩的大小决定最后指针的位置。其外形如下。
指针式功率因数计 测试时的连接图
我们对一个102W的LED光引擎采用了数字式和指针式两种功率因数计,其测试结果如下:
光引擎的整流器(采用124uF电解电容) 带恒流源的102W光引擎
采用数字式功率和功率因数计所得结果和采用指针式功率因数计测得结果完全不同。
数字式测得PF = 0.6590 指针式测得PF = +0.9
这个结果是非常令人惊喜的,因为不需要加任何功率因数补偿就可以得到+0.9 的功率因数!而且这是最权威的结果,也是应该得到官方的承认的。
功率因数的重要性和提高功率因数的方法
功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标之一,通常使用cosφ表示,我们可以用以下几项来介绍功率因数的重要性,及提高功率因数的方法。
1 有功功率和无功功率
企业的用电设备大部分都用电磁感应原理来工作的,比如:变压器、电焊机、电磁感应式电动机等等,它们都是靠电能转化成电磁能再转化为电能或机械能来实现的能量转换,这样,用电设备就必须从电网上吸收两种能量,一部分能量用于做功,即前边提到得机械能或热能,这部分能量大部分是为了满足生产和生活的需要,称为有功功率。另一部分能量用来产生交变磁场,它是变压器、电焊机或电感线圈形成能量转换和传输的介质,没有了磁场,就没有了传输能量的介质,从而使能量只能在电源或用电设备内部消耗,而不能对外传输,不能对外做功,这部分功率叫做无功功率。无功,顾名思义就是无用功,其实它并不是没有用,没有它,任何能量都只能自己消耗,不能传输,然而它确实在能量转换的过程中没有转换成其它能量,所以叫作无功功率。有功功率和无功功率都是电能运用所必须的,若有功功率不足,就不能满足用电负荷的需要,会将电网电压拉低,系统发电机的转速变慢,发电频率降低,影响用电质量,威胁发电厂和各用电设备的安全。若无功功率不足,系统电压也会降低,电流将会升高,电机过流过热,会导致用电设备绝缘破坏,甚至烧毁。
2 功率因数
功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标之一,通常使用cosφ表示。一个供电设备的供电容量通常是用视在功率表示,字面意思就是我们所能看到的功率,即表见功率,但不是真实功率,它的真实功率是由视在功率和功率因数的乘积决定的。所以说功率因数是一个非常重要的供电指标,而视在功率是由有功功率的平方与无功功率的平方和,开跟号得到的。视在功率确定后,有功功率分量高就称为功率因数高,有功功率分量低就称为功率因数低,有功功率和无功功率都是靠发电机发出的,然而用电设备所需要的功率会因设备的感性和容性不同而不同,当用电设备是感性时,用电设备的电压会超前电流90°;当用电设备是容性时,电流超前电压90°,两个分量将在一条直线上,但方向相反,用电设备中感性的居多,所以这就需要一个容
功率因数 相关文章:
- 基于风力发电系统的电能变换装置研究(10-13)
- 基于PIC16C72的电力三相不对负载无功补偿算法的实现(10-23)
- 无功补偿技术对低压电网功率因数的影响 (05-02)
- 现代逆变器系统的结构功能及其对功率因数校正(06-25)
- 功率因数校正在离线式电源中的应用(07-17)
- UPS标准中功率因数的概念(09-24)