航空系统跳频信号源的方案
振输出频率为:

式中,N2、R2、A2为锁相环路Ⅱ的分频系数,fDDS_i是DDS的晶体振荡器的频率。
一本振和二本振输出的高频信号经过混频后得到某一时刻跳频信号的输出,该信号经过射频信号调理电路处理后输出到待测设备,实现待测设备所需要的激励信号。
2 软件设计
如果说基于"DDS+PLL"硬件实现方式是跳频信号源的"骨架",那跳频信号源的"血肉"就是软件;只有在软件的配合下才有可能把跳频信号源的作 用发挥到最大。软件系统采用模块化编程,包括主程序、系统控制模块、数据处理模块以及通信模块。以系统控制模块中频率合成流程图为例简要说明软件流程,如 图3所示。

频率合成模块监测频率控制中心的频率码是否发生变化,如果发生变化则把数据送到DDS和PLL单元,否则则返回控制中心继续扫面;然后等待PLL达到锁定,如果没有达到锁定,则失锁计数增加l,对此信号进行判断,如果该信号小于6,则控制中心再一次发送频率码到DDS和PLL单元,如果失锁计数信号大于等于5,则发出失锁告警信号显示合成器故障。一本振和二本振的信号经过混频器后形成跳频通信所需要的某一时刻的频率。在不同时刻就会产生不同的频率,频率合成器产生的频率最后送到调理电路进行处理。
3 测试结果分析
把跳频信号源输出端接到频谱分析仪上,通过设置跳频的跳速,利用安泰信公司的频谱分析仪来测试输出信号的频谱纯度、频谱精度,可以得到如图4所示的波形。

从图4可以看出,某一时刻,该跳频信号信号源频输出了个跳频频率,如果通过软件设置跳频信号的跳速和PN码序列,可以实现对通信设备的检测。改变跳 频信号源工作方式,还可以作为多种通信设备的信号源,在施加跳频激励信号的情况下,通过通信设备灵敏度、音频响应等主要技术指标的测试,对照通信设备技术 指标可看出测试结果满足设备技术要求。
4 结束语
跳频通信在现代航空通信设备的应用越来越多,基于"DDS+PLL"实现的某通信设备检测仪的信号源克服了跳频通信设备测量的难题,该信号源充分利 用了频率合成中DDS产生频率分辨率高和锁相环输出频率高的优点,克服DDS输出频率低和锁相环频率分辨率低的缺点,实现了对通信设备的检测与控制,该信 号发生器可以推广到多种通信设备检测仪的信号源的设计,具有极大的军事经济效益。
- 于FPGA的跳频通信频率合成器设计(02-07)
- 信号源分析仪工作原理(12-23)
- 信号源结构原理 (12-11)
- 100MHz带宽的经济型矢量信号源新选择(06-11)
- EWB的基本操作方法(02-11)
- 基于ADF4360-4的GPS信号源设计(08-25)
