微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 通用LVDT信号调理电路图

通用LVDT信号调理电路图

时间:10-25 来源:ADI 点击:

输入电流。

  过滤输出电压纹波。

  AD8615的内部保护电路使输入端得以承受高于电源电压的输入电压。这很重要,因为 AD698的输出电压能够在±15 V 的电源下摆动±11 V。只要输入电流限制在5 mA以内,输入端便可施加更高的电压。这主要是因为 AD8615 (1 pA)具有极低的输入偏置电流,因此可使用更大的电阻。使用这些电阻会增加热噪声,导致放大器总输出电压噪声增加。

  AD8615是用于缓冲并驱动12位SAR ADC AD7992输入的理想放大器,因为它具有输入过压保护,并且具备输入端和输出端轨到轨摆动能力。

  噪声分析

  若所有信号调理器件已选定,则必须确定转换信号所需的分辨率。如同大多数的噪声分析一样,只需考虑几个关键参数。噪声源以RSS方式叠加;因此,只需考虑至少高于其它噪声源三至四倍的任何单个噪声源即可。

  对于LVDT信号调理电路而言,输出噪声的主要来源是 AD698的输出纹波。相比之下,其他噪声源( AD8615) 的电阻噪声、输入电压噪声和输出电压噪声)要小得多。

  当电容值为0.39 μF且反馈电阻两端的并联电容为10 nF(如图 3所示)时, AD698的输出电压纹波为0.4 mV rms。请注意,图1中的简化原理图并未显示这些器件以及相关的引脚连接;但详情可参见 AD698数据手册。

  

  图3. 输出电压纹波与滤波器电容的关系

  能够解析出来的最大rms数现在可通过将满量程输出除以总系统rms噪声计算得到。

  

  有效分辨率可通过以2为底数,对总rms数求对数而获得。

  

  从有效分辨率中减去2.7位,即可得到无噪声码分辨率:

  无噪声码分辨率= 有效分辨率 − 2.7位

  

  系统的总输出动态范围可这样计算:将满量程输出信号(5 V) 除以总输出均方根噪声(0.4 mV rms),然后转化为dB,其结果约等于82 dB。

  

  AD7992作为此应用的良好备用器件,与3.4 MHz串行时钟配合使用时,具有12位分辨率和每通道188 kSPS的采样速率。

  相位滞后/超前补偿

  AD698将返回信号与初级端参考振荡器的输入相乘,并通过解调产生输出信号。少量的相移就会导致大量的线性误差,对输出而言就是欠冲。

  相位超前网络可补偿E-100系列LVDT中初级到次级的−3°相移。图4显示了两种不同的相位补偿网络。

  

  图4. 相位滞后/超前网络

  为合适的网络选取元件值时,重要的是需注意RS 和R T 有效地构成了一个电阻分压器,在激励信号达到 AD698的 ±ACOMP输入之前降低其幅度。这表示R T 需比RS 大得多。滞后/超前电路还给激励输出增加负载,因此建议采用较大的电阻值。最终目标是以较小的幅度下降,在 AD698ACOMP输入端达到所需的相位滞后/超前。

  根据下列等式可算出相位滞后/超前的量:

  

  测试结果

  使用连接J3的Measurement SpecialTIes,Inc. E-100经济型LVDT,并通过数字示波器监控 EVAL-CN0301-SDPZ评估板上 AD698J6的输出,则实际输出纹波为6.6 mV p-p,如图5所示。

  

  图5. 低通滤波器处理前的输出电压纹波

  AD698输出和 AD8615输入之间的低通滤波器(3 kΩ、0.01 μF) −3 dB带宽为5.3 kHz,并可将纹波降低至2 mV p-p。

  由于低通滤波器位于 AD698输出级和 AD8615输入级之间,数据便可从 EVAL-CN0301-SDPZ评估板收集,如图6所示。

  

  图6. CN-0301评估软件屏幕截图

  AD698的纹波衰减至2 mV p-p,并且系统可获得11位无噪声代码分辨率。

  有关本电路笔记的完整设计支持包,请参阅 http://www.analog.com/CN0301-DesignSupport。

  飞行控制表面位置反馈中的应用

  在美国,无人驾驶飞行器(UAV),或称无人驾驶飞机,正在国家安全方面扮演着越来越重要的角色。这些高科技、复杂的高空作业平台受控于数英里外的人员,并且支持多任务。它们含有诸如空中侦察、作战武器平台、战场战区指挥和控制监督或无人空中加油站等功能。

  UAV上这种复杂的系统采用无数电子传感器,用于精确控制和反馈。若要控制UAV的高度(俯仰、滚动和偏航),则需使用执行器对飞行控制表面施加作用力。这些执行器能否对位置实现精确测量对于保持正确的飞行路径非常关键。

  用于测量执行器位置的传感器需要满足三个基本标准:精度高、可靠性高和重量轻。由Measurement SpecialTIes,Inc. 公司设计的LVDT可满足全部三个属性。

  多LVDT同步工作

  在许多应用中,将大量LVDT近距离使用,如多计数测量。若这些LVDT以相似的载波频率运行,杂散磁耦合可能导致拍频。产生的拍频可能会影响这些条件下的测量精度。为避免这种情况,所有LVDT均同步工作。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top