详细解析串联稳压电源电路和典型电路图
压为18.5V的变压器可以选用输出电压为18V或以上的变压器。当选用较高输出电压的变压器时,后面各部分电路的参数需要重新计算,以免由于电压过高造成元件损坏。
4、整流部分
这一部分主要计算整流管的最大电流(ID1)MAX和耐压(VD1)RM。由于四个整流管D1~D4参数相同,所以只需要计算D1的参数。
根据第二章《常用整流滤波电路计算表》可知,整流管D1的最大整流电流为:
(ID1)MAX=0.5×IO
(ID1)MAX=0.5×500mA=0.25A
考虑到取样和放大部分的电流,可选取最大电流(ID1)MAX为0.3A。
整流管D1的耐压(VD1)RM即当市电上升10%时D1两端的最大反向峰值电压为:
(VD1)RM≈1.414×(UB1)OMAX=1.414×1.1×(UB1)O≈1.555×(UB1)O
(VD1)RM≈1.555×18.5V≈29V
得到这些参数后可以查阅有关整流二极管参数表,这里我们选择额定电流1A,反向峰值电压50V的IN4001作为整流二极管。
5、滤波部分
这里主要计算滤波电容的电容量C1和其耐压VC1值。
根据根据第二章滤波电容选择条件公式可知滤波电容的电容量为(3-5)×0.5×T÷R,一般系数取5,由于市电频率是50Hz,所以T为0.02S,R为负载电阻。
当最不利的情况下,即输出电压为15V,负载电流为500mA时:
C1=5×0.5×T÷(UO÷IO)
C1=5×0.5×0.02S÷(15V÷0.5A)≈1666μF
当市电上升10%时整流电路输出的电压值最大,此时滤波电容承受的最大电压为:
VC1=(UB1)OMAX=20.35V
实际上普通电容都是标准电容值,只能选取相近的容量,这里可以选择2200μF的铝质电解电容。耐压可选择25V以上,一般为留有余量并保证长期使用中的安全,可将滤波电容的耐压值选大一点,这里选择35V。
6、调整部分
调整部分主要是计算调整管T1和T2的集电极-发射极反向击穿电压(BVT1)CEO,最大允许集电极电流(IT1)CM,最大允许集电极耗散功率(PT1)CM。
在最不利的情况下,市电上升10%,同时负载断路,整流滤波后的出电压全部加到调整管T1上,这时调整管T1的集电极-发射极反向击穿电压(BVT1)CEO为:
(BVT1)CEO=(UB1)OMAX=20.35V
考虑到留有一定余量,可取(BVT1)CEO为25V。
当负载电流最大时最大允许集电极电流(IT1)CM为:
(IT1)CM=IO=500mA
考虑到放大取样电路需要消耗少量电流,同时留有一定余量,可取(IT1)CM为600mA。
这样大允许集电极耗散功率(PT1)CM为:
(PT1)CM=((UB1)OMAX-UOMIN)×(IT1)CM
(PT1)CM=(20.35V-6V)×600mA=8.61W
考虑到留有一定余量,可取(PT1)CM为10W。
查询晶体管参数手册后选择3DD155A作为调整管T1。该管参数为:PCM=20W,ICM=1A,BVCEO≥50V,完全可以满足要求。如果实在无法找到3DD155A也可以考虑用3DD15A代替,该管参数为:PCM=50W,ICM=5A,BVCEO≥60V。
选择调整管T1时需要注意其放大倍数β≥40。
调整管T2各项参数的计算原则与T1类似,下面给出各项参数的计算过程。
(BVT2)CEO=(BVT1)CEO=(UB1)OMAX=20.35V
同样考虑到留有一定余量,取(BVT2)CEO为25V。
(IT2)CM=(IT1)CM÷βT1
(IT2)CM=600mA÷40=15mA
(PT2)CM=((UB1)OMAX-UOMIN)×(IT2)CM
(PT2)CM=(20.35V-6V)×15mA=0.21525W
考虑到留有一定余量,可取(PT2)CM为250mW。
查询晶体管参数手册后选择3GD6D作为调整管T2。该管参数为:PCM=500mW,ICM=20mA,BVCEO≥30V,完全可以满足要求。还可以采用9014作为调整管T2,该管参数为:PCM=450mW,ICM=100mA,BVCEO≥45V,也可以满足要求。
选择调整管T2时需要注意其放大倍数β≥80。
则此时T2所需要的基极驱动电流为:
(IT2)MAX=(IT2)CM÷βT1=15mA÷80=0.1875mA
7、基准电源部分
基准电源部分主要计算稳压管D5和限流电阻R2的参数。
稳压管D5的稳压值应该小于最小输出电压UOMIN,但是也不能过小,否则会影响稳定度。这里选择稳压值为3V的2CW51,该型稳压管的最大工作电流为71mA,最大功耗为250mW。为保证稳定度,稳压管的工作电流ID5应该尽量选择大一些。而其工作电流ID5=(IT3)CE+IR2,由于(IT3)CE在工作中是变化值,为保证稳定度取IR2>>(IT3)CE,则ID5≈IR2。
这里初步确定IR
- 开关稳压电源助力农业自动化(07-15)
- 解析PWM开关稳压电源尖峰干扰(07-19)
- 基于SPWM的交流稳压电源设计方案(09-15)
- 节能型交流稳压电源设计方案(09-19)
- 简单的三端直流稳压电源制作(06-07)
- 直流稳压电源的技术指标(07-30)
