移动电视接收器前端低成本设计方案
移动电视接收前端必须具有在远离发射器条件下工作所需的灵敏度,而且在有强信号时还能容忍过载。可被整集成到车载娱乐(ICE)系统,以及手机、便携式数字助理(PDA)、笔记本电脑等多种便携式电子设备内的移动电视接收能力,即使在用户的接收器和发射器间的距离随行程而变化(不同于传统广播电视)的条件下也应有良好的表现。将高增益低噪放大器(LNA)与一个PIN二极管旁路开关结合起来就可实现带过载保护、具有高灵敏度的移动电视接收器前端的低成本方案。
实现移动电视接收器最实用的办法是在强信号条件下降低接收机的增益。可变射频信号增益简化了对混频器级的线性要求,从而允许使用低成本射频IC来构建接收模块。在配有可切换/可调节增益接收器前端的级联分析中,输入三阶交调截取点(IIP3)的改善将是增益变化的函数。与固定增益接收器相比,可调增益接收器能更好地处理强信号。
自动增益控制(AGC)电路也可被用于改变LNA增益,而且由于通常是在通道滤波器前实现AGC,所以它可以对来自邻近信道传输的过载做出响应。
降低RF增益的一个办法是在LNA之前将部分射频信号分流到地。该方法使用的射频开关元件数量最少,但是当开关关闭时,会使得阻抗不匹配,从而可能影响系统其它部分。一种变通方法是把阻尼元件连至LNA并联谐振网络的高阻抗或"热"端,尽管从更大的增益控制范围角度看,这种方法在LNA之前牺牲了射频选择性。
当接收到的信号对LNA后面的各级(如混频器或中频(IF)放大器)呈过载时,还可以借助一对射频开关来旁路LNA级。在旁路状态,输入信号直接传送到下变频器IC。只要旁路信号回路内的器件匹配特征阻抗(移动电视是75Ω),不匹配的机会就会降至最小。当然,增加的开关使电路更复杂。
另一种办法是通过减小供给LNA的有源器件的静态电流来降低射频增益。类似双栅极MOSFET等采用该技术的放大器和器件使用附加的器件终端来控制偏置电流。因为不采用开关元件,所以这种增益控制方法在电路上最简单,但由于集电极/漏极电流低于额定器件直流工作点,它的线性度有所牺牲。
为满足客户对工作在47~870MHz频谱的双模(模拟/数字)移动电视接收机内LNA的要求,考虑了几种MMIC选择,但它们的线性度并不够好,因此没被采用。这里采用一个宽带高线性度MMIC LNA(MGA-68563型)和一个外接PIN二极管开关设计出了一个方案。
这款单级GaAs PHEMT LNA器件具有800微米的栅宽(图3)。该器件的栅极连接到一个内部电流镜,以补充工艺变化的影响并将阈值电压变异的影响降至最低。该LNA采用有损耗的负反馈以实现稳定性并在100MHz~1GHz频谱内将幅度响应平稳在一个3dB的窗口内(±1.5dB)。
因其内部反馈和低于10dB的输出回波损耗,该MMIC不需要输出阻抗匹配。但在一个如此宽的频率范围(47~870MHz)对输入进行匹配,被证明并非易事且需要一个非传统的方法,其中为优化输入回波损耗指标,FET的漏极电流(Ids)要高于标称值10mA。20mA的Ids就可满足输入回波损耗性能要求,但Ids被选为30mA以使其足够宽裕来补偿增加的PIN二极管开关电路带来的任何影响。该MMIC LNA的引脚4通过外接电阻器R1控制流过内部偏置电流发生器的电流。改变R1的尺寸规格会改变Ids,但电源电压Vd将保持为3V。将标称Ids加大三倍可提供更高线性度。
在设计LNA/开关电路时,一开始旁路开关采用了4个PIN二极管。对双刀双掷(DPDT)开关来说,这是常见的配置。该电路的工作原理是使位于上部的PIN二极管对导通,使下部的这对为零偏置,反之亦然。在正常操作中,只有低的这对PIN二极管导通,而LNA对射频信号进行放大。当必须降低射频增益时,上部这对PIN二极管导通,射频信号以旁路模式围绕LNA路由。这些电阻用于调节PIN二极管的正向电流以及将射频信号与逻辑控制端口VSW1和VSW2隔绝。第一款设计用的元件数量不少,所以要寻找一种更简单的方案。
通过与客户沟通,我们开发出一种更简单的双刀单掷(DPST)开关,只需把旁路路径与输入和输出端口连接或断开。由于不再对LNA通路进行切换控制,为利用未偏置FET的本有隔绝特性,在旁路模式时必须关闭LNA电源(Vdd)。这种方法降低了旁路通路的回波损耗性能,因为该通路具有未偏置FET并联的有限栅极和漏极阻抗。
在正常工作中,PIN二极管电源关闭(VSW=0V),而LNA电源仍恢复至3V。但这些零偏置PIN二极管受到寄生电容的影响,因此LNA的增益与回波损耗性能因旁路路径与输入和输出端口的不完全隔离而受损。
在LNA/开关内,电感L1和L2是铁氧体磁珠,它们在MMIC和二极管偏置网络的整个范围内呈现出高阻抗。没有L1作为
- CMMB移动电视解调器及解码芯片解决方案(12-01)
- 爱迪德移动电视解决方案(02-14)
- CMMB移动电视芯片SC6600V及其应用方案分析(03-17)
- 迪康、Solaris Mobile合推欧洲DVB-SH移动电视服务(03-24)
- 移动电视技术中高集成度的RF调谐器的运用(06-20)
- 高集成RF调谐器应对移动电视技术 (01-04)