微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > Verilog HDL简明教程(2)

Verilog HDL简明教程(2)

时间:02-11 来源:网络整理 点击:

行为描述方式

设计的行为功能使用下述过程语句结构描述:
1) initial语句:此语句只执行一次。
2) always语句:此语句总是循环执行, 或者说此语句重复执行。
只有寄存器类型数据能够在这两种语句中被赋值。寄存器类型数据在被赋新值前保持原有值不变。所有的初始化语句和always语句在0时刻并发执行。
下例为always语句对1位全加器电路建模的示例。
module FA_Seq (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;
reg Sum, Cout;
reg T1, T2, T3;
always
@ ( A or B or Cin ) begin
Sum = (A ^ B) ^ Cin;
T1 = A & Cin;
T2 = B & Cin;
T3 = A & B;
Cout = (T1| T2) | T3;
end
endmodule
模块FA_Seq 有三个输入和两个输出。由于Sum、Cout、T1、T2和T3在always 语句中被赋值,它们被说明为 reg 类型(reg 是寄存器数据类型的一种)。always 语句中有一个与事件控制(紧跟在字符@ 后面的表达式)。相关联的顺序过程(begin-end对)。这意味着只要A、B或Cin 上发生事件,即A、B或Cin之一的值发生变化,顺序过程就执行。在顺序过程中的语句顺序执行,并且在顺序过程执行结束后被挂起。顺序过程执行完成后,always 语句再次等待A、B或Cin上发生的事件。
在顺序过程中出现的语句是过程赋值模块化的实例。模块化过程赋值在下一条语句执行前完成执行。过程赋值可以有一个可选的时延。
时延可以细分为两种类型:
1) 语句间时延: 这是时延语句执行的时延。
2) 语句内时延: 这是右边表达式数值计算与左边表达式赋值间的时延。
下面是语句间时延的示例:
Sum = (A ^ B) ^ Cin;
#4 T1 = A & Cin;
在第二条语句中的时延规定赋值延迟4个时间单位执行。就是说,在第一条语句执行后等待4个时间单位,然后执行第二条语句。下面是语句内时延的示例。
Sum = #3 (A^ B) ^ Cin;
这个赋值中的时延意味着首先计算右边表达式的值, 等待3个时间单位,然后赋值给Sum。
如果在过程赋值中未定义时延,缺省值为0时延,也就是说,赋值立即发生。这种形式以及在always 语句中指定语句的其他形式将在第8章中详细讨论。
下面是initial语句的示例:
`timescale 1ns / 1ns
module Test (Pop, Pid);
output Pop, Pid;
reg Pop, Pid;
initial
begin
Pop = 0; // 语句 1。
Pid = 0; // 语句 2。
Pop = #5 1; // 语句 3。
Pid = #3 1; // 语句 4。
Pop = #6 0; // 语句 5。
Pid = #2 0; // 语句 6。
end
endmodule
initial语句包含一个顺序过程。这一顺序过程在0 ns时开始执行,并且在顺序过程中所有语句全部执行完毕后, initial语句永远挂起。这一顺序过程包含带有定义语句内时延的分组过程赋值的实例。语句1和2在0 ns时执行。第三条语句也在0时刻执行,导致Pop 在第5 ns时被赋值。语句4在第5 ns执行,并且Pid 在第8 ns被赋值。同样,Pop在14 ns被赋值0,Pid在第16 ns被赋值0。第6条语句执行后,initial语句永远被挂起。

结构化描述形式

在Verilog HDL中可使用如下方式描述结构:
1) 内置门原语(在门级);
2) 开关级原语(在晶体管级);
3) 用户定义的原语(在门级);
4) 模块实例 (创建层次结构)。
通过使用线网来相互连接。下面的结构描述形式使用内置门原语描述的全加器电路实例。
module FA_Str (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;
wire S1, T1, T2, T3;
xor
X1 (S1, A, B),
X2 (Sum, S1, Cin);
and
A1 (T3, A, B),
A2 (T2, B, Cin),
A3 (T1, A, Cin),
or
O1 (Cout, T1, T2, T3);
endmodule
在这一实例中,模块包含门的实例语句,也就是说包含内置门xor、and和or 的实例语句。门实例由线网类型变量S1、T1、T2和T3互连。由于没有指定的顺序, 门实例语句可以以任何顺序出现;图中显示了纯结构;xor、and和or是内置门原语;X1、X2、A1等是实例名称。紧跟在每个门后的信号列表是它的互连;列表中的第一个是门输出,余下的是输入。例如,S1与xor 门实例X1的输出连接,而A和B与实例X1的输入连接。
4位全加器可以使用4个1位全加器模块描述。下面是4位全加器的结构描述形式。
module FourBitFA (FA, FB, FCin, FSum, FCout );
parameter SIZE = 4;
input [SIZE:1] FA, FB;
output [SIZE:1] FSum
input FCin;
input FCout;
wire [ 1: SIZE-1] FTemp;
FA_Str
FA1( .A (FA[1]), .B(FB[1]), .Cin(FCin),
.Sum(FSum[1]), .Cout(FTemp[2])),
FA2( .A (FA[2]), .B(FB[2]), .Cin(FTemp[1]),
.Sum(FSum[2]), .Cout(FTemp[2])),
FA3(FA[3], FB[3], FTemp[2], FSum[3], FTemp[3],
FA4(FA[4], FB[4], FTemp[3], FSum[4], FCout);
endmodule
在这一实例中,模块实例用于建模4位全加器。在模块实例语句中,端口可以与名称或位置关联。前两个实例FA1和FA2使用命名关联方式,也就是说,端口的名称和它连接的线网被显式描述(每一个的形式都为".port_name (net_name))。最后两个实例语句,实例FA3和FA4使用位置关联方式将端口与线网关联。这里关联的顺序很重要,例如,在实例FA4中,第一个FA[4]与FA_Str 的端口A连接,第二个FB[4]与FA_Str 的端口B连接,余下的由此类推。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top